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Shimon Even (1935–2004)



Preface

On May 1, 2004, the world of theoretical computer science suffered a stunning
loss: Shimon Even passed away. Few computer scientists have had as long, sus-
tained, and influential a career as Shimon.

Shimon Even was born in Tel-Aviv in 1935. He received a B.Sc. in Electri-
cal Engineering from the Technion in 1959, an M.A. in Mathematics from the
University of Northern Carolina in 1961, and a Ph.D. in Applied Mathematics
from Harvard University in 1963. He held positions at the Technion (1964–67
and 1974–2003), Harvard University (1967–69), the Weizmann Institute (1969–
74), and the Tel-Aviv Academic College (2003-04). He visited many universities
and research institutes, including Bell Laboratories, Boston University, Cornell,
Duke, Lucent Technologies, MIT, Paderborn, Stanford, UC-Berkeley, USC and
UT-Dallas.

Shimon Even played a major role in establishing computer science education
in Israel and led the development of academic programs in two major institu-
tions: the Weizmann Institute and the Technion. In 1969 he established at the
Weizmann the first computer science education program in Israel, and led this
program for five years. In 1974 he joined the newly formed computer science
department at the Technion and shaped its academic development for several
decades. These two academic programs turned out to have a lasting impact on
the evolution of computer science in Israel.

Shimon Even was a superb teacher, and his courses deeply influenced many of
the students attending them. His lectures, at numerous international workshops
and schools, inspired a great number of students and researchers. His books,
especially his celebrated Graph Algorithms, carried his educational message also
to computer scientists who were not fortunate enough to meet him in person.
As a mentor to aspiring researchers, Shimon was almost without peer, nurturing
numerous junior researchers and advising many graduate students, who went on
to have their own successful research careers.

Shimon Even was a pioneer in the areas of graph algorithms and cryptogra-
phy, and his research contributions to these areas influenced the course of their
development. Shimon was famous for not confining his interests to a few topics,
but choosing rather to work in such diverse areas as switching and automata
theory, coding theory, combinatorial algorithms, complexity theory, distributed
computing, and circuit layout. In each of these areas, he produced high-quality,
innovative research for more than four decades.

Shimon was the purest of pure theoreticians, following his nose toward re-
search problems that were “the right” ones at the moment, not the faddish ones.
His standards were impeccable, to the point where he would balk at employing
any result whose proof he had not mastered himself. His integrity was unim-
peachable: he would go to great lengths to defend any principle he believed in.
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Shimon had a great passion for computer science as well as a great passion
for truth. He valued simplicity, commitment to science, natural questions and
carefully prepared expositions. By merely following his own way, Shimon influ-
enced numerous researchers to adopt his passions and values. We hope that this
is reflected in the current volume.

This volume contains research contributions and surveys by former students
and close collaborators of Shimon. We are very pleased that Reuven Bar-Yehuda,
Yefim Dinitz, Guy Even, Richard Karp, Ami Litman, Yehoshua Perl, Sergio Ra-
jsbaum, Adi Shamir, and Yacov Yacobi agreed to send contributions. In accor-
dance with Shimon’s style and principles, the focus of these contributions is on
addressing natural problems and being accessible to most researchers in theoret-
ical computer science. The contributions are of three different types, reflecting
three main scientific activities of Shimon: original research, technical surveys,
and educational essays.

The Contributions

The contributions were written by former students and close collaborators of
Shimon. In some cases the contributions are co-authored by researchers who
were not fortunate enough to be close to Shimon or even to have met him in
person. Below we comment on particular aspects of each contribution that we
believe Shimon would have appreciated.

Original Research

Needless to say, everybody likes original research, and Shimon was no exception.
We believe that Shimon would have been happy with the attempt to make these
research contributions accessible to a wide range of researchers (rather than
merely to experts in the area). In order to promote this goal, these contributions
were reviewed both by experts and by non-experts.

– P. Fraigniaud, D. Ilcinkas, S. Rajsbaum and S. Tixeuil: The Reduced Au-
tomata Technique for Graph Exploration Space Lower Bounds. Shimon liked
connections between areas, and the areas of graph algorithms and of au-
tomata theory were among his favorites.

– O. Goldreich: Concurrent Zero-Knowledge with Timing, Revisited. Shimon
would have joked at Oded’s tendency to write long papers.

– R.M. Karp: Fair Bandwidth Allocation Without Per-Flow State. Shimon
would have like the fact that the starting point of this work is a practical
problem, and that it proceeds by distilling a clear computational problem
and resolving it optimally.

– R.M. Karp, T. Nierhoff and T. Tantau: Optimal Flow Distribution Among
Multiple Channels with Unknown Capacities. This paper has the same flavor
as the previous one, and Shimon would have liked it for the very same reason.
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– A. Litman: Parceling the Butterfly and the Batcher Sorting Network. Shimon
would have liked the attempt to present a new complexity measure that
better reflects the actual cost of implementations.

– X. Zhou, J. Geller, Y. Perl, and M. Halper: An Application Intersection
Marketing Ontology. Shimon would have liked the fact that simple insights
of graph theory are used for a problem that is very remote from graph theory.

– R.L. Rivest, A. Shamir and Y. Tauman: How to Leak a Secret: Theory
and Applications of Ring Signatures. Shimon would have like the natural
(“daily”) problem addressed in this paper as well as the elegant solution
provided to it.

– O. Yacobi with Y. Yacobi: A New Related Message Attack on RSA. Shimon
would have enjoyed seeing a father and son work together.

Technical Surveys

Shimon valued the willingness to take a step back, look at what was done (from
a wider perspective), and provide a better perspective on it. We thus believe
that he would have been happy to be commemorated by a volume that contains
a fair number of surveys.

– R. Bar-Yehuda and D. Rawitz: A Tale of Two Methods. Shimon liked stories,
and he also liked the techniques surveyed here. Furthermore, he would have
been excited to learn that these two techniques are in some sense two sides
of the same coin.

– Y. Dinitz: Dinitz’ Algorithm: The Original Version and Even’s Version. Shi-
mon is reported to have tremendously enjoyed Dinitz’s lecture that served
as a skeleton to this survey.

– C. Glaßer, A.L. Selman, and L. Zhang: Survey of Disjoint NP-pairs and Re-
lations to Propositional Proof Systems. This survey focuses on one of the
applications of promise problems, which was certainly unexpected in 1984
when Shimon Even, together with Alan Selman and Yacov Yacobi, intro-
duced this notion.

– O. Goldreich: On Promise Problems. This survey traces the numerous and
diverse applications that the notion of promise problems found in the two
decades that have elapsed since the invention of the notion.

– G. Malewicz and A.L. Rosenberg: A Pebble Game for Internet-Based Com-
puting. Shimon liked elegant models, and would have been interested to see
pebble games used to model an Internet-age problem.

Educational Essays

Shimon liked opinionated discussions and valued independent opinions that chal-
lenge traditional conventions. So we are sure he would have enjoyed reading these
essays, and we regret that we cannot have his reaction to them.
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– G. Even: On Teaching Fast Adder Designs: Revisiting Ladner & Fischer.
Shimon would have been very proud of this insightful and opinionated ex-
position of hardware implementations of the most basic computational task.

– O. Goldreich: On Teaching the Basics of Complexity Theory. Shimon would
have appreciated the attempt to present the basics of complexity theory in
a way that appeals to the naive student.

– A.L. Rosenberg: State. Shimon would have supported the campaign, launched
in this essay, in favor of the Myhill-Nerode Theorem.

December 2005 Oded Goldreich (Weizmann Institute of Science)
Arnold L. Rosenberg (University of Massachusetts Amherst)

Alan L. Selman (University at Buffalo)
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The Reduced Automata Technique

for Graph Exploration Space Lower Bounds�

Pierre Fraigniaud1 ��, David Ilcinkas2 ��, Sergio Rajsbaum3 � � �, and
Sébastien Tixeuil4 †

1 CNRS, LRI, Université Paris-Sud, France
pierre@lri.fr

2 LRI, Université Paris-Sud, France
ilcinkas@lri.fr

3 Instituto de Matemáticas, Univ. Nacional Autónoma de México, Mexico
rajsbaum@math.unam.mx

4 LRI & INRIA, Université Paris-Sud, France
tixeuil@lri.fr

Abstract. We consider the task of exploring graphs with anonymous
nodes by a team of non-cooperative robots, modeled as finite automata.
For exploration to be completed, each edge of the graph has to be tra-
versed by at least one robot. In this paper, the robots have no a priori
knowledge of the topology of the graph, nor of its size, and we are in-
terested in the amount of memory the robots need to accomplish explo-
ration, We introduce the so-called reduced automata technique, and we
show how to use this technique for deriving several space lower bounds
for exploration. Informally speaking, the reduced automata technique
consists in reducing a robot to a simpler form that preserves its “core”
behavior on some graphs. Using this technique, we first show that any
set of q ≥ 1 non-cooperative robots, requires Ω(log(n

q
)) memory bits

to explore all n-node graphs. The proof implies that, for any set of q
K-state robots, there exists a graph of size O(qK) that no robot of this
set can explore, which improves the O(KO(q)) bound by Rollik (1980).
Our main result is an application of this latter result, concerning ter-
minating graph exploration with one robot, i.e., in which the robot is
requested to stop after completing exploration. For this task, the robot
is provided with a pebble, that it can use to mark nodes (without such a
marker, even terminating exploration of cycles cannot be achieved). We
prove that terminating exploration requires Ω(log n) bits of memory for
a robot achieving this task in all n-node graphs.

� A preliminary version of this paper appears in the proceedings of the 12th Inter-
national Colloquium on Structural Information and Communication Complexity
(SIROCCO), Mont Saint-Michel, France, May 24-26, 2005, as part of [13].

�� Supported by the INRIA project “Grand Large”, and the projects “PairAPair” of the
ACI “Masses de Données”, and “FRAGILE” of the ACI “Sécurité et Informatique”.

� � � Supported by LAFMI and PAPIIT projects. Part of this work was done while visiting
LRI, Univ. Paris Sud, Orsay.

† Supported by the INRIA project “Grand Large”. Additional support from the
project “FRAGILE” of the ACI “Sécurité et Informatique”.

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 1–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1 Introduction

The problem of exploring an unknown environment occurs in a variety of sit-
uations, like robot navigation, network maintenance, resource discovery, and
WWW search. In these situations the entities performing exploration can be
either a physical mobile device or a software agent. In this paper, we restrict
our attention to the case where the environment in which the mobile entities
are moving is modeled as a graph. At an abstract level, graph exploration is the
task where one or more mobile entities, called robots in this paper, are trying
to collectively traverse every edge of a graph. In addition to the aforementioned
applications, graph exploration is important due to its strong relation to com-
plexity theory, and in particular to the undirected st-connectivity (USTCON)
problem (cf., e.g., [6]). Given an undirected graph G and two vertices s and t,
the USTCON problem is to decide whether s and t are in the same connected
component of G. The directed version of the problem is denoted STCON. It is
known that STCON is complete for NL, the class of non-deterministic log-space
solvable problems. Whether USTCON is complete for L, the class of problems
solvable by deterministic log-space algorithms, has been a challenging open prob-
lem for quite a long time, and it is only very recently that Reingold proved that
USTCON is indeed complete for L [15]. Note that the existence of a finite set
of finite-state automata able to explore all graphs would have put USTCON
in L, and proving or disproving this existence had therefore motivated quite
a long sequence of studies. Cook and Rackoff [6] eventually proved that even a
more powerful machine, called JAG, for ”Jumping Automaton for Graphs”, can-
not explore all graphs (a JAG is a finite set of globally cooperative finite-state
automata enhanced with the ability, for every automaton, to ”jump” from its
current position to any node occupied by another automaton). Since this lat-
ter result, the exploration graph problem is focussing on determining the space
complexity of robots able to explore all graphs.

As far as upper bounds in concerned, Reingold showed in [15] that his log-
space algorithm for USTCON implies the existence of log-space constructible
universal exploration sequences (UXS) of polynomial length. Roughly speaking,
a UXS [14] is a sequence of integers that (1) tell a robot how to move from node
to node in a graph (the exit port at the kth step of the traversal is obtained
by adding the kth integer of the UXS to the entry port), and (2) guarantee to
explore every node of a graph of appropriate size (a UXS is defined for a given
size, and a given degree). Rephrasing this latter result, there is a O(log n)-space
robot that explores all the graphs of size n. The extend to which this bound can
be decreased by using a set of q > 1 cooperative robots remains open. Also, the
question of the existence of log-space constructible universal traversal sequences
(UTS) [1] remains open (a UTS is a sequence of port-numbers so that the output
port at the kth step of the traversal is the kth element of the sequence).

As far as lower bounds are concerned, most papers are dealing with the
design of small traps for arbitrary teams of robots, i.e., small graphs that no
robot of the team can explore. (Formally, a trap consists of a graph and a
node from where the robots start the exploration.) The first trap for a finite
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state robot is generally attributed to Budach [5] (the trap is actually a planar
graph). The trap constructed by Budach is however of large size, and a much
smaller trap was described in [12] which proved that, for any K-state robot, there
exists a trap of at most K + 1 nodes. In [16], Rollik proved that no finite set
of finite locally-cooperative automata, i.e., automata that exchange information
only when they meet at a node, can explore all graphs. In the proof of this result,
the author uses as a tool a trap for a set of q non-cooperative K-state robots (such
robots may have different transition functions, hence they will follow different
paths in the explored graph). This latter trap is of size O(KO(q)) nodes. Rollik’s

trap for cooperative robots is even larger: Õ(KK···
K

) nodes, with 2q + 1 levels
of exponentials where the Õ notation hides logarithmic factors. In this paper,
we present a new lower bound technique for graph exploration, called reduced
automata technique. Roughly, this technique consists in reducing a robot to a
simpler form that preserves its “core” behavior on some graphs: except for some
easily described closed paths, the reduced robot follows the path of the original
robot, on any such graph.

The interested reader can find other pointers to the literature in, e.g., [3–
5, 7, 8, 12]. To complete the picture, and before describing our results in more
details, let us point out that Shimon Even, whom this book is dedicated to, was
interested in graph exploration problems early on in his career. In particular,
in his 1976 seminal paper with Tarjan [11], he presented a way of numbering
nodes during a DFS traversal that proved to be useful in many algorithms. In
collaboration with A. Litman and P. Winkler [10], he then studied traversal in
directed networks. With G. Itkis and S. Rajsbaum [9], he described a traversal
strategy for undirected graphs that constructs a subgraph with good connectivity
but few edges. And recently, in collaboration with S. Bhatt, D. Greenberg, and
R. Tayard [2], he studied the problem of using a robot as simple as possible (with
access to some local memory stored in the vertices) to find an Eulerian cycle in
mazes and graphs.

1.1 Problem Settings

As in [6, 16], we are interested in exploration of undirected graphs where nodes
are not uniquely labeled. Note that, besides the theoretical interest of under-
standing when or at what cost such graphs can be explored, the unlabeled-node
setting can occur in practice, due to, e.g., privacy concerns, limited capabilities
of the robots, or simply anonymous edge intersections. The robots, modeled as
a deterministic automata, can however identify the edges incident to a node
through unique port labels, from 1 to the degree of the node. We consider two
types of exploration:

– Perpetual exploration, in which the task of the robots is to, eventually, tra-
verse all edges.

– Terminating exploration, in which the robots, after completing exploration,
must eventually stop.
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In acyclic graphs, terminating exploration is strictly more difficult than
perpetual exploration. In particular, it is shown in [7] that terminating ex-
ploration in n-node bounded degree trees requires a robot with memory size
Ω(log log log n), whereas perpetual exploration is possible with O(1) bits. In ar-
bitrary graphs, terminating exploration cannot be achieved. Indeed, it is easy
to see that a robot can traverse all edges of some graphs, say a cycle, but that
it cannot recognize when it has visited a node twice, because nodes are not
uniquely labeled. That is, there are graphs that a robot can explore perpetually,
but it can never stops. Thus, as in previous work in this setting, e.g., [3, 4, 8], we
assume that, for terminating exploration, robots can mark nodes: a robot can
drop a pebble in a node and later identify it and pick it up.

Following the common conventions in the literature, the robots aiming at
performing perpetual exploration are not given pebbles, whereas robots aim-
ing at performing terminating exploration are given one or more pebbles. As a
consequence, the two problems becomes incomparable. Indeed, terminating ex-
ploration is more demanding than perpetual exploration, but the ”machines”
designed for these two tasks do not have the same power.

A team of robots is a set of deterministic automata with possibly different
transition functions, all starting from the same starting point. When sets or
teams of robots are considered, the robots of a team can communicate in various
manners. Four cases are considered in the literature:

– Non-cooperative robots: the robots are oblivious of each other, and each of
them acts independently from the others.

– Locally cooperative robots: robots meeting at a node can exchange informa-
tion, including their identities and their current states.

– Globally cooperative robots: the robots are perpetually aware of the states
of the others, of whether they meet and who they meet, and of the degrees
of the nodes occupied by the robots.

– Jumping Automaton: the robots are globally cooperative, and any robot is
able to jump from the node it is currently occupying to a node currently
occupied by any other robot.

In this paper, we restrict our attention to the two weakest models: non-
cooperative robots, and locally cooperative robots.

1.2 Our Results

In this paper, we present a new lower bound technique for graph exploration,
called reduced automata technique. Based on this technique, the lower bounds
presented in this paper are obtained as follows. Assume a set of q robots is given.
Then construct the smallest possible graph, called a trap for this set of robots,
such that if the robots are placed in some specified nodes of the graphs, then
there is at least one edge that is not traversed by any of the robots. If the q
robots have K states each, and the trap has fq(K) nodes, then the space lower
bound for a set of q robots exploring all n-node graphs is Ω(log f−1

q (n)) bits.
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The reduced automata technique for the design of space lower bounds for
graph exploration is described in Section 2. This lower bound technique allows
us to concentrate on a subclass of graphs, called homogeneous: edge-colored and
regular. For such graphs, a robot can be described by a very simple automaton,
whose transition function consists of a graph formed by a directed path followed
by a directed cycle. The reduced automata technique applies to homogeneous
graphs. Roughly speaking, a reduced robot has the property that if it traverses
an edge {u, v} at some step of the exploration, say from u to v, then its next
move will not be traversing the edge back to u. This property is achieved by
transforming a robot into a reduced robot whose transition function never has
two consecutive edges with the same label. We construct a trap core directly
from the transition function of a reduced robot, which is then easily extended
to a trap for the original robot.

In Section 3 we use the technique of reducing a robot to construct a degree 3
trap for a K-state robot, of size K + 3. The proof technique can be generalized
to produce traps of any degree, but for illustrating the technique, it is sufficient
to work with degree 3 graphs. Indeed, [12] presents a trap of size K + 1, planar
and valid for graphs of any degree. The proof we present is somewhat simpler
than the one of [12], and moreover, it illustrates the technique used to prove our
results in the following sections.

In Section 4 we present our new results about traps for collective exploration
by a set of non cooperative robots. The robots do not communicate at all, and
every edge must be traversed by at least one robot. We show (cf. Theorem 4)
that for any set of q non-cooperative K-state robots, there exists a 3-regular
graph G, and two pairs {u, u′} and {v, v′} of neighboring nodes, such that any
robot of the set, starting from u or u′, fails to traverse the edge {v, v′}. The
graph G has O(qK) nodes. This improves the O(KO(q)) bound of Rollik [16] (cf.
Corollary 2).

By simply plugging this new trap for non-cooperative robots into Rollik’s
construction, we get (cf. Corollary 4) a new trap for locally-cooperative explo-

ration of size Õ(KK···
K

) with q + 1 levels of exponential, to be compared with
the 2q + 1 levels of [16]. Our trap is thus smaller than the one in [16].

In Section 5 we show that Theorem 4 has a significant impact on the space
complexity of terminating graph exploration by a single robot. As mentioned
above, when terminating exploration is required, the robot is provided with a
pebble. We prove (cf. Theorem 5) that terminating exploration requires a robot
with Ω(log n) bits for the family of graphs with at most n nodes. As mentioned
before, in arbitrary graphs, perpetual exploration and terminating exploration
are not comparable because even if perpetual exploration is a simpler task than
terminating exploration, in the latter case the robot is given a pebble. Therefore,
even if the existence of traps with at most K + O(1) nodes for any K-state
robot implies an Ω(log n) bits lower bound for the memory size of a robot that
performs perpetual exploration in all graphs with at most n nodes, the Ω(log n)
lower bound for terminating exploration is not a consequence of the first result
about perpetual exploration.
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2 Preliminaries

In Section 2.1 we define formally what we mean by a robot exploring a graph.
In Section 2.2 we describe basic properties of a robot. In Section 2.3 we show
how to simplify the structure of a robot, for the proofs of the following sections.

2.1 Graphs, Robots and Traps

A robot considered in this paper traverses a graph by moving from node to
node along the edges of the graph. We first describe the basic model of a robot
traversing a graph, and what we mean by a trap, namely a pair (G, u) where G
is a graph and u ∈ V (G) such that a robot starting from u cannot explore G.
To construct a trap for a robot, we first design a graph that the robot cannot
leave, called a trap core, and then we add to it edges that the robot does not
explore. We explain how the description of a robot is simplified when traversing
a more symmetric kind of graph, called homogeneous. The simpler description
will be crucial in the rest of the paper.

The Basic Model of a Robot Traversing a Graph. In a graph where nodes
have no identifiers, two nodes are indistinguishable to the robot, unless they
have different degree. However, edges have local port numbers, so the robot can
distinguish two different edges incident to a node. In more detail, each edge has
two labels, each one associated to one of its two endpoints. The labels of the edges
incident to a node v are arbitrary and pairwise distinct in the set {0, . . . , δv−1},
where δv denotes the degree of v. When a robot is in a node, it sees only the
labels at the endpoints of the edges incident to the node. This allows the robot
to distinguish the edges incident to the node through their unique labels, called
local port numbers. Notice that an edge may have different port numbers in its
two endpoints. We refer to those graphs as port-labeled graphs.

A robot is an automaton with a single initial state; at the beginning, it is
placed on an arbitrary starting node of the graph in this state. When a robot is
in a node u and traverses an edge {u, v} to get to v, it learns the label at v’s
endpoint of the edge once it enters v. The robot decides which edge to take to
leave v based on this label, as well as on the degree of v, and of course, based
on its local state. We do not define formally such a robot because we will study
its behavior only on a special class of graphs, called homogeneous, for which a
very simple representation of a robot is possible, that we will define formally.
In Section 5 we will consider an extended definition of a robot that can drop a
pebble in a node and pick it up when it returns to the node to drop it somewhere
else.

A trap for a set of robots is a pair (G, U), where G is a port-labeled graph
and U is a set of nodes of G, such that if all the robots are placed in nodes
u ∈ U , each in its initial state, then there will be an edge {u, v} that is never
traversed by the robots. To make our lower bound results stronger, sometimes
we present a simple trap, namely with no parallel edges and self-loops.
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Fig. 1. A trap and its core

Homogeneous Graphs and Trap Cores. We will study the behavior of a
robot in a graph where both port numbers of an edge coincide. In such a graph
a robot can be described by a very simple automaton, as we shall see next. A
δ-homogeneous undirected graph is a graph that is δ-regular and δ-edge-colored.
A graph is δ-regular if each of its nodes has degree δ, and it is δ-edge-colored if
each edge is labeled with one of the integers in the set Δ = {0, 1, . . . , δ − 1} in
a way that no two edges incident to the same node have the same color. For the
sake of clarity, we mainly focus on graphs with maximum degree three.

When a robot traverses a 3-homogeneous graph, each time it arrives to a node
the local environment looks exactly the same as in any other node: all nodes are
equal and in each node all local ports are 0, 1, or 2. Thus, the robot decides
which edge to take to exit the node based only on its current state. Formally, a
robot is an automaton A = (Δ,S, f, ŝ), with a finite set of states S, an initial
state ŝ ∈ S, and a transition function f : S → S × Δ. For a state s ∈ S with
f(s) = (s′, i), denote fst(s) = s′ and f�(s) = i. The robot A moves on a 3-regular
graph as follows. Initially A is placed on a node of the graph in state ŝ. If A is
in a node v in state s then A moves to the node v′ such that the edge {v, v′} is
labeled f�(s), and changes to state fst(s).

When considering the formal definition of a robot for homogeneous graphs,
one can construct a trap by first defining a graph G that is edge-colored, but not
necessarily 3-regular, and then adding some edges and nodes to obtain a trap in
which the trap core looks homogeneous to the robot. We do not demand that a
trap is 3-homogeneous as long as a robot never tries to take an edge that is not
defined in the graph. Formally:
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Definition 1 (Trap Core). A trap core for a set of robots is a pair (G, U),
where G is a 3-edge-colored graph and U is a set of nodes of G, such that if all
the robots are placed in nodes u ∈ U , each in its initial state, then each time a
robot A = (Δ,S, f, ŝ) is in some node u in some state s, if f�(s) = i then an
edge {u, v} labeled i must be in G.

From a Trap Core to a Trap. Once we have built a trap core (G, U) it is not
difficult to construct a trap (G′, U), by adding to it some edges and a constant
number of nodes. Notice that if (G, U) is a trap core for a set of robots, then
(G′, U) is a trap for the same set of robots, because G is a strict subgraph of
G′ that the robots never leave. We first show how to construct G′ from a 3-edge
colored graph G, by adding at most 2 nodes, and adding edges that guarantee
that every node of G has degree exactly 3, and we define local port labels for the
newly added edges. Thus, as in Figure 1, edges that were originally in G have
the same port labels in both endpoints (e.g. {v, w} in the figure), while newly
added edges may have different port labels (e.g. {u, w} in the figure). Afterward
we show how to construct an homogeneous G′ with at most 13 new nodes.

Definition 2 (Simple Trap Extension). Given a 3-edge-colored graph G =
(V, E), the labeled simple graph G′ = (V ′, E′), |V ′| ≤ |V | + 2, obtained from G
in the following construction is called the simple trap extension of G.

To construct G′ first we can assume that there are at most 2 nodes of degree
less than 3. Otherwise, there are two nodes of degree less than 3 that are not
connected by an edge, and we may add an edge connecting them, with appro-
priate local port labels. Now, we add at most 2 new nodes. Each time we add
a new node, we connect it to nodes with degree less than 3, with appropriate
local port labels. If all nodes of G have now degree exactly 3, we are done, else
we add a new node and repeat the procedure. At the end we obtain the desired
3-edge colored graph G′, where all original nodes have exactly degree 3, while
the new nodes have degree at most 3. Moreover, G′ is a simple graph.

Remark. Using the same type of arguments as above, it is possible to construct
a simple trap extension for arbitrary degree δ, by adding at most δ − 1 nodes.

We can construct a trap extension Ghom from G that is homogeneous, by
adding a few more nodes.

Definition 3 (Homogenous Extension). Given a 3-edge colored graph G =
(V, E), the graph Ghom = (V ′, E′), |V ′| ≤ |V | + 13, obtained from G in the
following construction is called the homogeneous extension of G.

Add to each node of G of degree i less than 3, 3 − i pending “half-edges”
colored differently from each other and from the colors of edges incident to the
node. For � = 0, 1, 2, let parity(�) be the parity of the number of pending half-
edges labeled � in the resulting graph5 G′.
5 We will use this notion of “graph” with “half-edges” several times in this paper.
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Claim. For any �, �′ ∈ {0, 1, 2}, parity(�) = parity(�′).

Proof. An edge of G′ can be considered as two non-pending half-edges. For
� ∈ {0, 1, 2}, let t� be the total number of half-edges of G′ labeled �, and p�,
resp. np�, be the number of pending, resp. non-pending, half-edges of G′ labeled
�. All nodes in G′ are exactly of degree 3 and are incident to one half-edge of
each label. Thus t0 = t1 = t2, and this is equal to the number of nodes in G′,
|G′|. In G′, if a half-edge is not pending, then it forms an edge with another
non-pending edge with the same label. Therefore, all the np�’s are even. Since
t� = p� +np�, t� and p� have the same parity, and thus all the p�’s have the same
parity. ��

We now construct the desired homogeneous graph Ghom. Let � be the parity
of the number of pending half-edges of a given label in G′. If � is odd, then
we add to G′ a node connected to one of the half-edges, labeled say �, and add
two half-edges pending from this node, labeled �′ �= � and �′′ /∈ {�, �′}. As a
consequence, � becomes even. Now, we pair the half-edges with identical labels,
and connect them to form one edge. Parallel edges can be avoided, unless for
some � there are only two pending half-edges with label �, and these are incident
to the same edge. In this case the pair is connected by the gadget displayed in
Figure 2, where � = 0. By labeling the edges of every gadget appropriately (as
in the figure), we obtain a 3-homogeneous graph Ghom.

Claim. Ghom has at most 13 nodes more than G.

Proof. We added at most 1 node to correct the parities, and at most 3 gadgets
to avoid parallel edges, each one with 4 nodes. Thus the total number of nodes
added is at most 13. ��

0

2
1

G’
0 1 2

0

Fig. 2. The gadget for connecting half-edges

Remark. As for the simple trap extension, it is easy to check that one can
construct an homogeneous extension for arbitrary degree δ, by using a specific
gadgets for every δ.
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2.2 Basic Properties

Consider a robot A = (Δ,S, f, ŝ). The transition function f defines a directed
labeled graph G(A) = (S, F ) with node set S and arc set F , such that the arc
(s, t) ∈ F iff fst(s) = t, and the arc has label f�(s). Notice that the labeled graph
G(A) together with the starting node ŝ completely determine the robot A. We
assume in the rest of the paper that every state s ∈ S of A is reachable from ŝ;
unreachable states do not affect the behavior of A and can be ignored. Namely,
there is in G(A) a directed path from ŝ to every other node.

Each node of G(A) has out-degree 1 because f is a function. It follows that
G(A) consists of a simple, possibly empty path starting in ŝ and ending in some
node s1, followed by a simple cycle starting and ending in s1. This is because we
assume that A has no unreachable states and S is finite. Thus, the arc labels of
the path define a path word W0 over Δ, |W0| ≥ 0, and the arc labels of the cycle
define a cycle word W over Δ, |W | ≥ 1. Clearly, |W0W | = |S|. The footprint of
A is fp(A) = W0W

∗. When A is placed on a node of a homogeneous graph G
in state ŝ, fp(A) is the sequence of labels of edges traversed by A.

The next lemma says that once A reaches a node x of the graph in some state
s that belongs to the cycle of G(A), the path that A follows in G is a closed path
that includes x; moreover, A returns to x in the same state s. A configuration
(x, s) denotes the fact that A is in node x in state s. Also, if fst(s) = s′, f�(s) = i,
and the label of the edge {x, x′} is i then we write (x, s)→ (x′, s′).

Lemma 1. Consider a robot A with path and cycle words W0, W traversing a
graph G. Let x be a node reached by A after at least |W0| steps, and assume A
is in state s when it is in x. Then A will eventually be back in (x, s).

Proof. Assuming A is in state s when it is in x, consider the sequence of config-
urations starting with (x, s)

(x0, s0)→ (x1, s1)→ · · ·

where (x, s) = (x0, s0). The sequence of configurations must contain two equal
configurations, say (xi, si) = (xi+k, si+k), for some k > 1, because both G and
A are finite. Assume k is as small as possible. If i = 0 we are done, so suppose
i > 0. We will prove that (xi−1, si−1) = (xi+k−1, si+k−1), which implies that
(x0, s0) = (xk, sk), and the lemma follows.

Notice that A moves from xi−1 to xi along the edge labeled f�(si−1). Now,
when A eventually returns to the same configuration (xi+k, si+k), the state
si+k−1 = si−1 (all the states considered are in the cycle of G(A) because the
state s belongs to the cycle of G(A)). Thus, f�(si−1) = f�(si+k−1). It follows
that the edge {xi+k−1, xi+k} must be labeled f�(si−1). Finally, xi+k−1 = xi−1

since xi+k = xi and G is edge-colored. ��

2.3 Reduced Robots

A robot A is irreducible if G(A) satisfies two properties: (i) for any two consec-
utive (distinct) arcs s → s1 → s2, it holds f�(s) �= f�(s1), and (ii) for two arcs
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with the same end-node s→ s1, s2 → s1, it holds f�(s) �= f�(s2). We show here
how to obtain an irreducible robot A′ from a robot A. The behavior of A and
of A′ on a graph will not be exactly the same, but will be related in the sense
that the region of a graph traversed by A cannot be much larger than the region
traversed by A′.

Let Ḡ(A) be the undirected graph corresponding to G(A). Roughly speaking,
we want the robot to be irreducible to construct a graph based on Ḡ(A) on which
the robot will be moving. Since the constructed graph must be edge-colored,
Ḡ(A) must be edge-colored. Then we can place A at the beginning of the path
of Ḡ(A) and it will never try to go out of Ḡ(A). To obtain an irreducible robot A′

from A we perform a series of reduction steps that modify its transition function
and reachable states. When A and A′ are placed on the same node of a graph,
the path traversed by A′ is contained in the path traversed by A; essentially A′

skips some closed walks of A. These reductions are formally defined next.
A reduction step is the operation consisting of transforming a robot A =

(Δ,S, f, ŝ) into another robot A′ = (Δ,S′, f ′, ŝ′), S′ ⊆ S, where one of the above
properties (i) or (ii) is enforced for two arcs. There are two types of reduction
steps, corresponding to the two properties. The idea is to repeat type-i steps
until no more are possible, and hence the robot satisfies property (i), and then
if property (ii) is not satisfied, do a single type-ii step to enforce property (ii).
Only type-i reductions change the path traversed by the robot.

Type-i Reduction. A type-i reduction step is applicable if G(A) has two con-
secutive distinct arcs s → s1 → s2 with f�(s) = f�(s1). The basic idea is illus-
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Fig. 3. A type-i reduction

trated in Figure 3. In (a) there is a segment of G(A) with the two consecutive
arcs labeled 1, and in (b) there is the corresponding segment of G(A′) after the
reduction. In this example s has only one in-neighbor, t, and hence s becomes
unreachable. This is the basic idea behind the type-i reduction, but in the for-
mal definition below we need to consider several special cases depending on the
number of in-neighbors of s, and on where is the initial state ŝ.
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The properties of a type-i reduction that we need are illustrated in Figure
3(c) and (d), where the path traversed by A and A′ resp. is depicted in dotted
arrows. If A is in node w of G in state t, it moves to node v in state s, and
then it moves to v′, change to state s1, and move back to v, in state s2 (since
f�(s) = f�(s1) = i, where {v, v′} is colored i; in the figure i = 1). Thus, it is
easy to check that a type-i reduction eliminates this v, v′, v loop from the path
traversed by the robot in the graph, and makes no other changes to the path;
that is, if the path arrives to v from w and then proceeds to w′ after traversing
the v, v′, v loop, after the type-i reduction the robot will go from w to v and then
directly to w′. Therefore, before the reduction step, the robot explores a node
at distance at most 1 from the nodes explored by the robot after the reduction.

Formally, a type-i reduction transforms A into A′ by doing the following
changes to f and by defining ŝ′ (f ′(·) = f(·) and ŝ′ = ŝ unless specified otherwise
below). We consider four cases:

Case s = s2: In this case the cycle is of length 2 with the same labels. Assume
w.l.o.g. that s has no other in-neighbor besides s1 (it is impossible that both
s and s1 have 2 in-neighbors). Let f ′(s1) = (s1, i), where i = f�(s1). If s = ŝ
then ŝ′ = s1.
Otherwise, if s �= s2, it is possible that s has 0, 1, or 2 in-neighbors.

Case s �= s2, s has 0 in-neighbors: In this case s = ŝ. Let ŝ′ = s2.
Case s �= s2, s has 1 in-neighbor: Let t be the in-neighbor (t �= s1), with

f(t) = (s, i). Then let f ′(t) = (s2, i). If s = ŝ then let ŝ′ = s2.
Case s �= s2, s has 2 in-neighbors: Assume they are t1, t2, with f(t1) = (s, i),

f(t2) = (s, j). Then s �= ŝ. Let f ′(t1) = (s2, i) and f ′(t2) = (s2, j).

After doing these modifications, A′ is obtained by removing any unreachable
states. Notice that for each one of the previous four cases at least one unreachable
state is removed, namely s. Thus, at most K − 1 type-i reductions are possible,
starting from a K-state robot.

Lemma 2. Let A′ be the robot obtained from A = (Δ,S, f, ŝ) by applying a
type-i reduction on arcs s→ s1 → s2 with f�(s) = f�(s1). Then

1. The node s together with s→ s1 does not appear in A′.
2. If A and A′ start at the same node u of a graph in the same state s that

belongs to their cycle, when A and A′ are back in state s, they are placed in
the same node v and A has traversed at most one edge more than A′.

Proof. The first part of the lemma holds because state s becomes unreachable
in A′. We now prove the second part of the lemma. We thus consider that A and
A′ are both started from a node x0 in a state t0 that belongs to their cycle.

Assume a type-i reduction is applied to G(A) on the arcs s→ s1 → s2 with
f�(s) = f�(s1), to obtain A′. When s has one in-neighbor t, with f(t) = (s, i),
and s �= ŝ, A′ is equal to A except that f ′(t) = (s2, i) (and hence s becomes
unreachable).

Consider the sequence of configurations of G(A) when starting in a node x0,

(x0, t0)→ (x1, t1)→ · · ·
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where t0 = ŝ. Then the sequence of configurations of G(A′) is the same, except
that each time A gets to state t, say in the i-th step

· · · → (xi, ti)→ (xi+1, ti+1)→ (xi+2, ti+2)→ · · ·

where ti = t, and hence ti+3 = s2 with xi+1 = xi+3 (since f�(ti+1) = f�(ti+2)),
then the sequence of G(A′) is

· · · → (xi, ti)→ (xi+3, ti+3)→ · · ·

Therefore, the original path in the graph

x0, x1, . . . , xi, xi+1, xi+2, xi+3, . . .

becomes
x0, x1, . . . , xi, xi+3, . . .

and the loop xi+1, xi+2, xi+3 (xi+1 = xi+3) traversing the edge {xi+1, xi+2} back
and forth is eliminated from the path. ��

Type-ii Reduction. Once a type-i reduction step is not applicable in G(A),
a single type-ii reduction can be used. A type-ii reduction step is applicable if
G(A) has two states such that f(s) = f(s1), that is, G(A) has two arcs with
the same end-node s → t, s1 → t, and f�(s) = f�(s1). See Figure 4 where
f�(s) = f�(s1) = 1; in part (a) there is G(A), and in part (b) there is G(A′) after
the reduction. A type-ii reduction transforms A into A′ by doing the following
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Fig. 4. A type-ii reduction

changes to f and by defining ŝ′ (f ′(·) = f(·) and ŝ′ = ŝ unless specified otherwise
below). Exactly one of s, s1 must be in the cycle of G(A), let’s say s1. So there is
a path from t to s1. This path is of length at least 1, because otherwise t = s1 and
there is a loop from t to itself labeled f�(s), and a type-i reduction is applicable.
Recall that fp(A) = W0W

∗. Let W ′ be the longest common postfix of W0 and
W ∗; |W ′| > 0 by the type-ii assumption. Let t2 be the node just before W ′

starts in the cycle of G(A). In Figure 4, W ′ = 21. We consider two cases, in both
cases A′ is obtained from A by the following modifications, and removing any
unreachable states:
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Case |W0| > |W ′|: That is, W ′ is a strict postfix of W0; let t1 be the in-
neighbor of the node just before W ′ starts in the simple path of G(A).
Thus f�(fst(t1)) = f�(t2) is the first letter of W ′. Let f ′(t1) = (t2, f�(t1)).

Case |W0| = |W ′|: Let ŝ′ = t2.

The following lemma is straightforward.

Lemma 3. Let A′ = (Δ,S′, f ′, ŝ′) be the robot obtained from A = (Δ,S, f, ŝ)
by applying a type-ii reduction on arcs s → t, s1 → t, with f�(s) = f�(s1), and
s1 in the cycle of G(A). Then

1. The node s together with s → t does not appear in A′. Moreover, a type-ii
reduction is not applicable to G(A′).

2. If A and A′ start at the same node of a graph, they both traverse the same
path.

3. If a type-i reduction is not applicable to G(A) then it is not applicable to
G(A′).

Using Lemma 2 and Lemma 3 it is easy to prove the following, summarizing
the procedure to obtain an irreducible robot.

Lemma 4. Let A′ = (Δ,S′, f ′, ŝ′) be the robot obtained from A = (Δ,S, f, ŝ)
through the longest possible sequence of type-i reductions followed by a type-ii
reduction (if applicable). Let k be the number of reduction steps in this sequence.

1. A′ is irreducible.
2. |S′|+ k ≤ |S|.
3. If A and A′ start at the same node u of a graph in the same state s that

belongs to their cycle, when A and A′ are back in state s, they are placed in
the same node v and A has traversed at most k edge more than A′.

Proof. The first part of the lemma follows from Lemma 2(1) and from Lemma
3(1,3): if there are two arcs violating property (i), then a type-i reduction can
be applied, and at least one state is removed in the process. Also, if there are
two arcs violating property (ii) after all arcs satisfy property (i), then a type-ii
reduction will eliminate the situation, without creating arcs that violate property
(i).

The second part of the lemma follows because each type-i and type-ii re-
duction eliminates at least one state, as observed in Lemma 2(1) and Lemma
3(1).

The third part of the lemma follows from Lemma 2(2) and Lemma 3(2), by
induction on k. ��

3 A Trap for a Single Robot

In this section, we focus on graph exploration by a single robot. We present a
trap for a K-state robot of size O(K). As explained in the Introduction, a similar
result was presented in [12]. We consider a robot and an irreducible version of it.
First we show how to construct a trap core for the irreducible robot, and then
how to extend it to a trap for the original robot.
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3.1 A Trap for an Irreducible Robot

Let Â = (Δ,S, f, ŝ) be an irreducible robot with footprint fp(Â) = W0W
∗,

|W0W | = K. Recall that its graph of state transitions G(Â) consists of a di-
rected path starting in the initial state ŝ, followed by a directed cycle. Thus,
the corresponding undirected graph, Ḡ(Â), consists of a path P connected to a
cycle C; let x̂ be the initial node of P . If C is of length at least 3 then Ḡ(Â) is a
simple edge-colored graph (no parallel edges and no self-loops), and it serves as
a trap core (Definition 1) for Â. If C is of length less than 3 we modify it a little
to make it a simple edge-colored graph that is also a trap for Â, denoted Ḡ1(Â).
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Fig. 5. Eliminating parallel edges

We construct the simple, edge-colored graph Ḡ1(Â) from Ḡ(Â) as follows:

– Assume the directed cycle of G(Â) is of length 2, with states s and t (Figure
5(a) illustrates this case with W = 10). Then the undirected cycle in Ḡ1(Â)
will have 4 edges, labeled WW , adding two new nodes as in Figure 5(b).
The path is P , as in Ḡ(Â).

– Assume the directed cycle of G(Â) is of length 1 with state s (Figure 6(a)
illustrates this case with W = 1). Then the undirected cycle in Ḡ1(Â) will
have 4 edges, labeled abab, where a is equal to the single letter of W and b
is different from a and from the last letter of W0 (if any), as in Figure 6(b),
where abab = 1010. The path is P , as in Ḡ(Â).

Notice that the only node of Ḡ1(Â) of degree 3 is the node where the path and
the cycle are joined. Thus, it is not homogeneous, and if we place a robot in
one of its nodes, it could try to take an edge that does not exist in the graph.
Clearly, this does not happen if we place Â at x̂. Namely, starting at x̂, Ḡ1(Â)
with any edge added is a trap core for Â, with at most 3 nodes more than Ḡ(Â).
We have the following straightforward lemma.

Lemma 5. The graph Ḡ1(Â) is simple and edge-colored, with at most |S| + 3
nodes. Moreover, Ḡ1(Â) is a trap core for Â when starting at x̂.
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Fig. 6. Eliminating a self-loop

3.2 A Trap for the Original Robot

We present two different constructions of a trap for A. In both cases we use the
graph Ḡ1(Â) of Lemma 5, where Â is an irreducible robot obtained from A. The
first method, described in Theorem 1, produces a smaller trap than the second,
described in Theorem 2, but the second method will be useful in the following
section.

Theorem 1. For any robot A = (Δ,S, f, s0) there exist a trap of at most |S|+2
nodes, and an homogeneous trap of at most |S|+ 13 nodes.

Proof. Let Â be an irreducible robot obtained from A, and consider its undi-
rected graph Ḡ(Â). By Lemma 5 the modified graph Ḡ1(Â) is simple and edge-
colored. Also, Â can be placed in the first node x̂ of the path P of Ḡ1(Â) in its
initial state, and it never tries to take an edge not in the graph. Now, place A in
x̂ in its initial state. Each time A wants to take an edge with some label not in
the graph, we add the edge (with the label) to the graph. By Lemma 2 the paths
traversed by A (and not by Â) are trees where A stays in states eliminated
by the series of type-i reductions. Thus, the added edges form trees, and the
nodes added correspond to the eliminated states, so we get back a graph with
|S| nodes. Now, A never tries to take an edge not in the graph. For this graph,
consider the simple extension of Definition 2, and the homogeneous extension as
in Definition 3. The first is a trap (G, x̂) for A with at most 2 additional nodes,
while the second is a homogeneous trap (G, x̂) for A with at most 13 additional
nodes. ��

Remark. Using extensions for arbitrary degree allows us to obtain a similar result
as the one in [12]. In fact, the extension used in [12] outputs a graph which is
neither simple nor homogeneous. It is however of smaller size: |S| + 1 nodes,
independently from the considered degree.

The second way of constructing a trap uses the K-tower method. Assume
an homogeneous graph H is given, together with one of its edges, say {v, v′}.
Cut the edge to produce two pending half-edges e, e′. Add a “tower” of height
K + 1 connected to e, e′, and a gadget closing the tower as in Figure 7. The two
internal nodes of the gadget at the top of the tower are denoted by v1 and v′1.
Add labels to the tower and the gadget to make the whole graph edge-colored,
and denote it G. Thus, G is homogeneous.
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Fig. 7. The tower method

Theorem 2. For any robot A = (Δ,S, f, s0) there exist an homogeneous trap
(G, U) of at most 3|S|+ 22 nodes.

Proof. Let Â be an irreducible robot obtained from A, and consider its undi-
rected graph Ḡ(Â). By Lemma 5 the modified graph Ḡ1(Â) is simple and edge-
colored. Also, Â can be placed in the first node x̂ of the path P of Ḡ1(Â) in
its initial state, and it never tries to take an edge not in the graph. Consider
the homogeneous extension H of Ḡ1(Â), as in Definition 3, with at most 13
additional nodes. Pick any of the new edges added to H , say {v, v′}, and add
a tower of height K + 1, K = |S|, as described above, to obtain G. Now, place
A in x0 in its initial state. Notice that as G is homogeneous, A never tries to
take an edge not in the graph. Finally, the edge {v1, v

′
1} is not traversed by A.

This is because Â does not traverse the edge {v, v′}, and hence it does not enter
the tower. By Lemma 4, the trajectory of A is never at distance greater than
K (where K = |S|) from the trajectory of Â. Thus, since the tower is of height
K + 1, A never reaches the top of the tower. Therefore, A does not traverse the
edge {v1, v

′
1}, and (G, x̂) is a trap for A.

It remains to count the number of nodes of G. The graph Ḡ(Â) has at most
K nodes, Ḡ1(Â) has at most K + 3 nodes. Then, H has at most K + 16 nodes.
The tower has 2K + 6 nodes, so the total is at most 3K + 22 nodes. ��

Corollary 1. A robot that explores all graphs of size n requires at least Ω(log n)
memory bits.

Using a different proof argument, [12] also proves a lower bound that depends
on the diameter and the maximum degree of the graph, rather than just the
number of nodes. It is, nevertheless, possible to use the trap core proof method
to obtain a similar result. We recall the theorem from [12]:

Theorem 3. A robot that explores all graphs of diameter D and maximum de-
gree δ requires exactly Θ(D log δ) memory bits.

4 A Trap for a Team of Non-cooperative Robots

In this section, we focus on graph exploration by a team of non-cooperative
robots. (The independent robots may have different transition functions, hence
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they will follow different paths in the explored graph.) The main result of the
section is the construction of a trap of size O(qK) for any set of q non-cooperative
K-state robots. This result is stated in Theorem 4. To prove this result, we first
need an auxiliary lemma (Lemma 6) that shows how, given any automaton, any
homogeneous graph can be transformed into a trap for this automaton. This
result is used at every induction step of the proof of Theorem 4.

4.1 Trapping an Irreducible Robot

In this section we prove an auxiliary result for Theorem 4. Assume an irreducible
K-state robot Â = (Δ,S, f, ŝ) is placed at a node x0 of a graph G in its initial
state ŝ, and we want to create a trap core for Â by extending G at a given
edge {v, v′}, and moreover, the extension should be of size O(K). (if Â does not
traverse the edge then there is nothing to be done.) See Figure 8. The extension
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e

e'
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(c)

G H

H G'
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Fig. 8. Extending a graph at a single edge to trap a robot

is by cutting {v, v′} to create two pending half-edges (Figure 8(b)); the node v
is connected to a pending half-edge e and v′ is connected to a pending half-edge
e′. The resulting graph is H1. A graph G′ of O(K) nodes is glued to e and
e′ (Figure 8(c)), such that Â does not traverse at least one of its edges. The
resulting graph is called H . Actually, it turns out that the extension added to G
is pretty simple: either adding a path connected to a cycle (based on Ḡ(Â)) as
illustrated in Figure 8(c), or connecting e and e′ by (an appropriately labeled)
path.

Consider the footprint of Â, fp(Â) = W0W
∗, |W0W | = K, where pi is the

i-th letter in fp(Â). Consider the sequence of configurations of Â

(x0, s0)→ (x1, s1)→ · · ·
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where s0 = ŝ. Let pi+1 = f�(si). Assume Â traverses {v, v′} for the first time
at step i, i ≥ 1; i.e., when going from (xi−1, si−1) to (xi, si); assume w.l.o.g. it
traverses it at this time from v to v′, i.e., xi−1 = v and xi = v′. Thus, pi is the
label of {v, v′}. In other words, if we cut the edge to obtain the two pending
half-edges e, e′, then Â traverses e.

We consider two cases depending on when Â traverses e, during the simple
path of G(Â) or during the cycle of G(Â).
Case 1. Assume Â traverses e at step i ≤ |W0|. Thus, pi belongs to W0. In this
case we can use the undirected graph of Â, Ḡ(Â), and construct the version with
no parallel edges and self-loops, Ḡs(Â), as in Lemma 5, adding at most 3 new
nodes. We glue the part of Ḡs(Â) that starts after pi to e. Namely, we connect
to e a path of length |W0| − i whose extremity is denoted by w. The edges of
this path are labeled pi+1, . . . , p|W0|. At w, we add the ring of Ḡs(Â). The other
half-edge e′ is completed into an edge by adding to it one new node, and the
graph obtained is H . Notice that we added at most K + 4 new nodes.
Case 2. If Â traverses e at step i > |W0|, then it traverses e to get into some
state s of the cycle in G(Â); assume this is the j-th state of the cycle (recall
that the cycle is assumed to start in the last state of the path of G(Â)). That
is, after traversing e, Â would traverse edges labeled p|W0|+j , p|W0|+j+1, . . .

Let x be the node of H1 reached by Â after |W0| steps, let W−1 be the
sequence W written in reverse order, and let Â−1 be the robot that traverses
edges labeled (W−1)∗. Thus, when Â−1 starts at x and Â reaches x, Â−1 proceeds
as Â, but backwards. Let Â∗ be the robot that traverses edges labeled W ∗, i.e.
the robot derived from Â by removing states and transitions that involved W0.

Claim. Starting from x, Â−1 eventually traverses one of the half-edges pending
at v or v′.

Proof. Assume for contradiction that Â−1 does not traverse any of the half-edges
pending at v or v′. By Lemma 1, Â−1 returns to x in the same state, and hence
its path in H1 is a closed path. This path traversed backwards is exactly what
Â∗ traverses from x. So Â∗ does not traverse any of the half-edges pending at v
or v′. Thus, Â also does not traverse them, a contradiction. ��

By Claim 4.1 we can consider the state reached by Â−1 after it traverses one
of the pending half-edges; assume this is the k-th state of the cycle in G(Â). We
consider two sub-cases, depending on whether Â−1 traverses the same half-edge
as Â, or not.

Case 2.1. The robot Â−1 traverses the half-edge e pending at v (i.e., the
same as Â). This implies that the k-th label in W is equal to the (j − 1)-th
label in W , which is the label of e. We consider the section of the cycle of
G(Â) from the j-th state to the k-th state. The end edges of this section have
the label of e. We now consider the following word: W ′ = W (j − 1)W (j)W (j +
1) . . .W (k−1)W (k)W (k+1) . . . W (j−1)W (j)W (j+1) . . .W (k−1)W (k)W (k+
1) . . .W (j−1)W (j)W (j+1) . . . W (k−1)W (k) (Note that W (j−1) = W (k) and
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|W ′| ≥ 2 × |W | + 2). The two robots Â and Â−1 cannot follow the same path
forever after crossing edge e: otherwise, it would mean that moving them both
backwards, they would also follow the same path forever (which is impossible
since the two robots took different paths at node x in the past). Moreover, the
two robots must separate after at most |W | steps, and since |W ′| ≥ 2× |W |+2,
they must separate after at least 1 step and at most |W | − 1 steps. Now, if the
two robots separate from each other at some point after crossing edge e, let us
consider the smallest l such that W (j + l) �= W (k− 1− l), i.e. the nearest place
where the two robots separate from one another. Since W (j− 1) = W (k), l ≥ 1.
By definition of l, we have W (j + l− 1) = W (k− l). Since the considered robots
are reduced, we also have W (j + l−1) �= W (j + l). Still by definition of l, we get
W (j + l) �= W (k − 1 − l). Finally, because we consider reduced robots and we
have W (j + l− 1) = W (k− l), we get W (j + l− 1) �= W (k− 1− l). Overall, this
means that W (j + l−1), W (j + l), and W (k−1− l) are pairwise disjoint. We are
now ready to construct the following graph: from e, there is a chain that ends in
W (j + l− 1) at node w, and from this last node a circle W ′′ goes from W (j + l)
to W (k − l − 1). Since W (j + l) �= W (k − 1− l) (see above), |W ′′| > 2. We add
at w a ring of length |W ′′| labeled W ′′, starting and ending at w, so that once
Â and Â−1 reach w, each one traverses this ring in the opposite direction, and
gets back to w in the appropriate state to proceed along the path back to the
half-edge e. The other half-edge e′ is completed into an edge by adding to it one
new node, and the graph obtained is H . Notice that we added at most 2K + 1
new nodes.

Case 2.2. The robot Â−1 traverses the half-edge e′ pending at v′ (i.e., not
the same as Â). Suppose when Â−1 goes through v′ it is in state s. We consider
again the section of the cycle of G(Â) from the j-th state to the k-th state (if
the section is of length 1, we extend it with W to make sure there is at least one
internal node). We connect e and e′ by a path with the labels of this section,
to obtain H . Thus, when Â traverses the half-edge e, it follows the newly added
path, and gets to v′ in the appropriate state, namely s, to proceed along the
same path of Â−1 but backwards, and return to x. Notice that we added at
most 2K new nodes.

Lemma 6. The graph H is simple and edge-colored. Also, H is a trap core for
Â when starting in x0, with at most 2K + 3 nodes more than G.

Proof. It follows directly from Lemma 5 that H is simple and edge-colored. The
number of nodes of H is counted in the previous three cases.

The proof of Case 1 is as follows; the other cases are similar. Assume Â
traverses e at step i ≤ |W0|. In this case Â does not traverse the edge e′ of H .
Observe that Â is trapped in the segment of Ḡs(Â) added to e. This follows
because Â is in (xi−1, si−1) before traversing e, and in (xi, si) after traversing
it. At this moment it is at the beginning of the segment of Ḡs(Â) added, so it
will continue traversing this graph without trying to take an edge not defined,
as in Lemma 5. ��
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4.2 Trapping a Team of Robots

With the results of the previous subsection we are ready to prove the main result
of this section.

Theorem 4. For any set A of q non-cooperative K-state robots, there exist a
3-homogeneous graph G and two pairs of neighboring nodes {u, u′} and {v, v′}
such that (1) the edge {u, u′} is labeled 0, (2) starting at u or at u′, any robot
in A fails to traverse the edge {v, v′}, and (3) G has O(qK) nodes.

Proof. The proof is by induction on q ≥ 0. The basic step is q = 0. The corre-
sponding graph G is displayed on Figure 9.

u u’
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v’

1

12

2

0

0

Fig. 9. Basic step of the induction

For the induction step, assume that Theorem 4 holds for q, and let us show
that it holds for q + 1. Let A be a set of q + 1 non-cooperative K-state robots,
and let A ∈ A. By induction hypothesis, let Gq be an n-node 3-homogeneous
graph (where n is 10qK + O(q)) having two pairs of neighboring nodes {u, u′}
and {v, v′} with the edge {u, u′} labeled 0, such that, starting at u or at u′, any
robot in A \ {A} fails to traverse the edge {v, v′}. We construct a graph Gq+1

that satisfies Theorem 4 for A.
Let Â be an irreducible robot obtained from A as in Lemma 4. Consider its

footprint fp(Â) = W0W
∗, |W0W | ≤ K. We concentrate first our attention on

Â, and will come back later to the original robot A. Let us denote by pi the
i-th letter in fp(Â). Recall that since Â is irreducible, its associated undirected
graph Ḡ(Â) is edge-colored. Let us place Â at node u of Gq, and perform the
construction of the previous subsection, Lemma 6, to obtain a graph H . Then,
as in Theorem 2, construct an homogeneous graph H1 from Definition 3, and
add the tower at any of the newly added edges, say {v, v′} of height K + 1 (see
Figure 7), to obtain a graph H2. The edge {v1, v

′
1} in the gadget of the tower is

not traversed by A when starting from u.
We repeat the same construction by considering the robot Â launched from

u′ in H2. More precisely, we construct Gq+1 from H2 in the same way H2 was
constructed from Gq. In particular, there is a tower in Gq+1, and we define the
nodes v2 and v′2 of Gq+1 as the two internal nodes of the gadget at the top of
this tower. By construction Gq+1 is 3-homogeneous. Also, any robot in A fails to
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traverse the edge {v2, v
′
2} of Gq+1 when starting from u or u′. This is because by

induction hypothesis, starting from u or u′, a robot in A \ {A} never traverses
v, v′ in Gq and so will never traverse any of the edges added to obtain Gq+1,
and hence does not traverse the edge {v2, v

′
2} of Gq+1. Starting from u, A fails

to traverse the edge {v1, v
′
1} of H2. This edge being the one that is “opened” to

construct Gq+1 from H2, A fails to reach any of the two nodes v2 or v′2 in Gq+1.
Finally, by construction of Gq+1 from H2, A fails to reach any of the two nodes
v2 or v′2 in Gq+1 when starting from u′, in the same way A fails to reach any of
the two nodes w or w′ in H2 when starting from u.

To complete the proof, it just remains to compute the size of Gq+1. We claim
|Gq+1| ≤ |Gq| + 10K + O(1). We give simple upper bounds on the size of the
intermediate graphs. First, we have |H | ≤ |Gq|+ 2K + 3 by Lemma 6. Then, we
have |H1| has 13 more nodes at the most, as in Definition 3, so |H1| ≤ |Gq|+2K+
16. The tower has 2K +6 nodes (proof of Theorem 2), so |H2| ≤ |Gq|+4K +22.
The same procedure for the starting node u′ contributes to another 4K + 22
additional nodes. The result follows. Therefore, |Gq+1| ≤ 8qK + O(q), which
completes the proof of the theorem. ��

By simply rewriting Theorem 4, we derive a bound of the size of the small-
est trap for a set of q non-cooperative K-state robots, improving the one by
Rollik [16]:

Corollary 2. For any set of q non-cooperative K-state robots, there exists a
trap of size O(qK).

Corollary 3. A team of q non cooperative robots that explores all graphs of size
n requires at least Ω(log n

q ) memory bits per robot.

By simply plugging this latter bound in the construction by Rollik [16] for
team of locally-cooperative robots, we get:

Corollary 4. For any set of q locally-cooperative K-state robots, there exists a

trap of size Õ(KK···
K

), with q + 1 levels of exponential.

5 Bounds for Terminating Exploration

In this section, we consider the terminating exploration problem, in which a
robot must traverse all edges of the graph, and eventually stop once this task
has been achieved. A robot cannot solve this task in graphs with more nodes
than its number of states, by Lemma 1. Thus, the robot is given pebbles that
it can drop and take to/from any node in the graph. It is known that any finite
robot with a finite source of pebbles cannot explore all graphs [16]. On the other
hand, it is known that a robot with unbounded memory can explore all graphs,
using only one pebble [8]. An important issue is to bound the size of the robot
as a function of the size of the explored graphs.
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A δ-p-robot with a pebble or simply p-robot when δ is understood, is an
automaton A = (Δ,S, f, s0), with a finite set of states S, s0 ∈ S, and

f : S × {0, 1} → S ×Δ× {pick, drop}.

Every state s ∈ S has a component p(s) ∈ {0, 1} that indicates if A has the
pebble, p(s) = 1, or not, p(s) = 0. Only if p(s) = 1 we allow f to be undefined;
in such case we say s is a stop state. For the initial state s0, p(s0) = 0. Each
node v of the graph is in some state p(v) ∈ {0, 1} that indicates if the pebble is
in v, p(v) = 1, or not, p(v) = 0. The initial state of the graph satisfies: p(v) = 1
for exactly one node v.

The movement of a δ-p-robot A on a δ-regular graph is represented by a
sequence of configurations, each one consisting of the state of the robot and the
state of the graph. For the initial configuration, A is placed on some node of
the graph in state s0, and the pebble is in exactly one node. In general, if A is
in a node v in state s in some configuration, we compute f(s, p(v)) = (s′, i, b).
In the next configuration A will be in the node v′ such that the edge {v, v′} is
colored i, in state s′. Also in the next configuration: if b = drop then p(v) = 1
and p(s′) = 0, and if b = pick then p(v) = 0 and p(s′) = 1. It is assumed that b
can be equal to drop only if p(s) = 1 and b can be equal to pick only if p(v) = 1.

A robot A performs terminating exploration of a graph if after starting in
any node of the graph that has the pebble, it traverses all its edges and enters a
stop state. A graph which A does not succeed terminating exploration is called
a trap for A.

The next theorem shows that a p-robot that performs terminating explo-
ration in all graphs of at most n nodes requires Ω(n1/3) states, or equivalently
Ω(log n) bits of memory.

Theorem 5. For any K-state p-robot there exists a trap of size O(K3).

Proof. Let A = (Δ,S, f, s0) be a K-state p-robot. We construct a trap of size
O(K3) for A. For that purpose, we consider the restriction of A to states s such
that p(s) = 0 and input 0 (on nodes with no pebble). This defines a robot (with
no pebble, as in Section 2.1) except that some states may be unreachable from
s0. For every state s of this robot, we consider the robot As that has s as initial
state, and includes only reachable states from s. Let A = {As} be the set of all
these robots. Thus, |A| ≤ K.

Let G be a graph satisfying Theorem 4 for the set A. Remove edges {u, u′}
and {v, v′} from G. Consider two copies of the resulting graph, with the four
nodes of degree 2 indexed by the index of the copy, 1 and 2. These nodes are
re-connected as follows. Let c be the color of the deleted edge {v, v′}. Create two
edges {v1, v

′
2} and {v′1, v2} with color c. The resulting graph is denoted by G1

(see Figure 10).
Consider an infinite ternary tree modified as follows. Each node is replaced

by a 6-cycle. Edges of the cycles are labeled alternatively 1 and 2. Then, edges
of the infinite tree are replaced by two “parallel” edges labeled 0, as depicted on
Figure 11. The resulting graph is denoted by T .
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Fig. 11. The modified infinite tree T

The two graphs G1 and T are composed by replacing every pair {{x, y},
{x′, y′}} of parallel edges in T by a copy of G1. More precisely, x, y, x′, y′ are
respectively connected to nodes u1, u

′
2, u

′
1, u2 in G1. These new edges are labeled

0. The resulting graph is denoted by G2. A “meta-edge” of G2 is defined as a
copy of G1 replacing a parallel edge of T .

By definition of G and A, the p-robot A is unable to traverse a meta-edge of
G2 without the help of the pebble6. We now modify G2 to obtain a graph G3 such
that the p-robot A is unable to explore G3, even with the pebble. G3 contains
O(K) 6-cycles of T , and thus has at most O(K3) nodes. The transformation from
G2 to G3 is technical and very similar to the transformation used in [12] and
in [16]. Thus we only sketch the construction of G3, skipping technical details.
Since any p-robot cannot go from a 6-cycle to another 6-node cycle of G2 without
using the pebble, we define key steps as those for which the last time the p-robot
leaves a 6-cycle with the pebble, go through a meta-edge, and enters another 6-
cycle with the pebble. Because the number of states is finite, A will eventually
be twice in the same state at these key steps, at two nodes w and w′. With the
same technique as in [12], we identify the nodes w and w′. This leads to the

6 Since the {u, u′} edges are “open,” the proof requires to consider the last time the
p-robot is in a u node.
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graph G3 with the desired properties, that is G3 has O(K) 6-cycles, and thus
O(K) “parallel” edges. In each pair of “parallel” edges, there is a copy of G1.
Since G1 has O(K2) nodes, then G3 has O(K3) nodes. ��

Corollary 5. A robot that performs terminating exploration of all graphs of size
n requires at least Ω(log n) memory bits.

Remark. This latter bound is tight, as proved in [13].

6 Conclusions

On the one hand, we have proved that terminating exploration (using one pebble)
requires Ω(log n) bits for the family of graphs with at most n nodes. On the other
hand, we proved in [13] that there exists an terminating exploration algorithm
using a robot with O(D log Δ) bits of memory for the terminating exploration
of all graphs of diameter at most D and degree at most Δ. The design of a tight
bound for terminating exploration is still an open problem.
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Abstract. Following Dwork, Naor, and Sahai (30th STOC, 1998), we
consider concurrent executions of protocols in a semi-synchronized net-
work. Specifically, we assume that each party holds a local clock such that
bounds on the relative rates of these clocks as well as on the message-
delivery time are a-priori known, and consider protocols that employ
time-driven operations (i.e., time-out in-coming messages and delay

out-going messages).
We show that the constant-round zero-knowledge proof for NP of Gol-
dreich and Kahan (Jour. of Crypto., 1996) preserves its security when
polynomially-many independent copies are executed concurrently under
the above timing model.
We stress that our main result refers to zero-knowledge of interactive
proofs, whereas the results of Dwork et. al. are either for zero-knowledge
arguments or for a weak notion of zero-knowledge (called epsilon-knowl-
edge) proofs.
Our analysis identifies two extreme schedulings of concurrent executions
under the above timing model: the first is the case of parallel execution of
polynomially-many copies, and the second is of concurrent execution of
polynomially-many copies such that only a small (i.e., constant) number
of copies are simultaneously active at any time (i.e., bounded simultane-
ity). Dealing with each of these extreme cases is of independent interest,
and the general result (regarding concurrent executions under the timing
model) is obtained by combining the two treatments.

1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Micali and Rackoff [22, 23],
are fascinating and extremely useful constructs. Their fascinating nature is due to
their seemingly contradictory definition: they are both convincing and yet yield
nothing beyond the validity of the assertion being proven. Their applicability in
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the domain of cryptography is vast: they are typically used to force malicious
parties to behave according to a predetermined protocol (which requires parties
to provide proofs of the correctness of their secret-based actions without reveal-
ing these secrets). Such applications are based on the fact, proven by Goldreich,
Micali and Wigderson [19], that any language in NP has a zero-knowledge proof
system, provided that commitment schemes exist.1 The related notion of a zero-
knowledge argument was suggested (and implemented) by Brassard, Chaum and
Crépeau [7], where the difference between proofs and arguments is that in the
latter the soundness condition refers only to computationally-bounded cheating
provers.

In this work we consider the preservation of zero-knowledge under restricted
types of concurrent composition. Specifically, we consider multiple executions of
a protocol under a naturally limited model of asynchronous computation (which
covers synchronous computation as an important special case). We start by
recalling the basic notion of zero-knowledge and providing a wider perspective
on the question of its preservation under various forms of composition.

1.1 Zero-Knowledge Protocols

An interactive proof system for a language L is a (randomized) protocol for two
parties, called verifier and prover, allowing the prover to convince the verifier
to accept any common input in L, while guaranteeing that no prover strategy
may fool the verifier to accept inputs not in L, except than with negligible
probability. The first property is called completeness, and the second is called
soundness. The prescribed verifier strategy is always required to be probabilis-
tic polynomial-time. Furthermore, like in other application-oriented works, we
focus on prescribed prover strategies that can be implemented in probabilistic
polynomial-time given adequate auxiliary input (e.g., an NP-witness in case of
NP-languages). Recall that the latter refers to the prover prescribed for the com-
pleteness condition, whereas (unlike in argument systems [7]) soundness must
hold no matter how powerful the cheating prover is.

Zero-knowledge is a property of some prover-strategies. Loosely speaking,
these strategies yield nothing to the verifier, beyond the fact that the input is in
the prescribed language L. The fact that “nothing is gained by the interaction”
is captured by stating that whatever the verifier can efficiently compute after
interacting with the (zero-knowledge) prover on a specific common input, can be
efficiently computed from the assertion itself, without interacting with anyone.
Thus, the formulation of the zero-knowledge condition considers two ensembles
of probability distributions, each ensemble associates a probability distribution
to each input in L: The first ensemble represents the output distribution of the
verifier after interacting with the specified prover strategy P , where the verifier
is using an arbitrary efficient (i.e., probabilistic polynomial-time) strategy, not
necessarily the one specified by the protocol. The second ensemble represents
the output distribution of some probabilistic polynomial-time algorithm (which

1 Or, equivalently [27, 24], that one-way functions exist.
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does not interact with anyone). The basic paradigm of zero-knowledge asserts
that for every ensemble of the first type there exist a “similar” ensemble of
the second type. The specific variants differ by the interpretation given to the
notion of ‘similarity’, and in this work (as in most of the literature) we focus
on the most liberal interpretation. Under this (liberal) interpretation, similarity
means computational indistinguishability (i.e., failure of any efficient procedure
to tell the two ensembles apart). The ensembles {Xα} and {Yα} are said to be
computationally indistinguishable if, for every efficient procedure D (and every α),
it holds that

|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]| < μ(|α|)

where μ is a negligible function (i.e., a function vanishing faster than the recip-
rocal of any positive polynomial). For a detailed treatment of zero-knowledge,
the reader is referred to [16, Chap. 4].

1.2 Composition of Zero-Knowledge Protocols

A fundamental question regarding zero-knowledge proofs (and arguments) is
whether the zero-knowledge condition is preserved under a variety of composi-
tion operations. Three types of composition operations were considered in the
literature, and we briefly review these operations and what is known about the
preservation of the zero-knowledge condition under each of them.

Sequential Composition. Here the protocol is invoked (polynomially) many
times, where each invocation follows the termination of the previous one. At
the very least, security (e.g., zero-knowledge) should be preserved under sequen-
tial composition, otherwise the applicability of the protocol is severely limited
(because one cannot safely use it more than once).

Although the basic definition of zero-knowledge (as in the preliminary version
of Goldwasser et. al. [22]) is not closed under sequential composition (cf. [18]), a
minor augmentation of it (by auxiliary inputs) is closed under sequential compo-
sition (cf. [20]). Indeed, this augmentation was adopted in all subsequent works
(as well as in the final version of Goldwasser et. al. [23]).

Parallel Composition. Here (polynomially) many instances of the protocol
are invoked at the same time and proceed at the same pace. That is, we assume
a synchronous model of communication, and consider (polynomially) many ex-
ecutions that are totally synchronized such that the ith round message in all
instances is sent exactly at the same time. (One natural relaxation of this model
is discussed below.)

Goldreich and Krawczyk [18] presented a simple protocol that is zero-knowl-
edge (in a strong sense), but is not closed under parallel composition (even in
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a very weak sense).2 At the time, their result was interpreted mainly in the
context of round-efficient error reduction; that is, the construction of full-fledge
zero-knowledge proofs (of negligible soundness error) by composing (in parallel)
a basic zero-knowledge protocol of high (but bounded away from 1) soundness er-
ror. Since alternative ways of constructing constant-round zero-knowledge proofs
(and arguments) were found (cf. [17, 15, 8]), interest in parallel composition (of
zero-knowledge protocols) has died. In retrospect, as we argue in §1.4, this was
a conceptual mistake.

We also consider a relaxed model of parallel composition. In this model (of
“almost-parallel” composition), messages that are sent at the beginning of round
i (according to the sender’s local clock) are received before round i + 1 starts
(according to the receiver’s clock).

Concurrent Composition. This notion of concurrent composition general-
izes both the notions of sequential composition and parallel composition. Here
(polynomially) many instances of the protocol are invoked at arbitrary times
and proceed at arbitrary pace. That is, we assume an asynchronous (rather than
synchronous) model of communication.

In the 1990’s, when extensive two-party (and multi-party) computations be-
came a reality (rather than a vision), it became clear that it is (at least) desirable
that cryptographic protocols maintain their security under concurrent compo-
sition (cf. [12]). In the context of zero-knowledge, concurrent composition was
first considered by Dwork, Naor, and Sahai [13]. Their actual suggestions refer
to a model of naturally-limited asynchronicity (which certainly covers the case
of parallel composition). Essentially, they assumed that each party holds a lo-
cal clock such that the relative clock rates as well as the message-delivery time
are bounded by a-priori known constants, and considered protocols that employ
time-driven operations (i.e., time-out in-coming messages and delay out-going
messages). This timing model is the main focus of the current paper (and we
shortly discuss the pure asynchronous model in §1.4). The previously known
main results for the timing model are (cf. [13]):

– Assuming the existence of one-way functions, every language in NP has a
constant-round concurrent zero-knowledge argument.

– Assuming the existence of two-round perfectly-hiding commitment schemes
(which in turn imply one-way functions), every language in NP has a con-
stant-round concurrent epsilon-knowledge proof, where epsilon-knowledge
means that for every noticeable function ε :N→(0, 1] a simulator working in
time poly(n/ε(n)) can produce output that is ε-indistinguishable from the
one of a real interaction. (For further discussion of epsilon-knowledge, see
Section 1.6.)

2 We comment that parallel composition is problematic also in the context of reducing
the soundness error of arguments (cf. [3]), but our focus here is on the zero-knowledge
aspect of protocols regardless if they are proofs, arguments or neither.
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Thus, no constant-round proofs for NP were previously known to be concurrent
zero-knowledge (under the timing model). We comment that proofs with non-
constant number of rounds were known to be concurrent zero-knowledge (even
in the pure asynchronous model; cf. §1.4).

1.3 Our Results

Our main result closes the gap mentioned above, by showing that a (known)
constant-round zero-knowledge proof for NP is essentially concurrent zero-
knowledge under the timing model. That is, we prove:

Theorem 1 The (five-round) zero-knowledge proof system for NP of Goldreich
and Kahan [17], augmented with suitable time-driven operations, is concurrent
zero-knowledge under the timing model.

Thus, the zero-knowledge property of the proof system (of [17]) is preserved un-
der any concurrent composition that satisfies the timing model. In particular, the
zero-knowledge property is preserved under parallel composition, a result which
we consider of independent interest.

Recall that the proof system of [17] relies on the existence of two-round
perfectly-hiding commitment schemes (which is implied by the existence of claw-
free pairs of functions and implies the existence of one-way functions). Thus, we
get:

Theorem 2 Assuming the existence of two-round perfectly-hiding commitment
schemes, there exists a (constant-round) proof system for NP that is concurrent
zero-knowledge under the timing model.

Using the same techniques, we can show that several other known (constant-
round) zero-knowledge protocols remain secure under the concurrent timing-
model. Examples include the (constant-round) zero-knowledge arguments of
Feige and Shamir [15] and of Bellare, Jakobsson and Yung [4]. The latter protocol
(referred to as the BJY-protocol) is of special interest because it is a four-round
argument for NP that relies only on the existence of one-way functions. The
above protocols are simpler (and use fewer rounds) than the argument systems
previously shown (in [13]) to be concurrent zero-knowledge (under the timing-
model), alas their security (under this model) is established by a more complex
simulator. (See further details in Section 6.1.)

1.4 Discussion of Some Issues

We clarify some issues that underly our study. Some of these issues were men-
tioned explicitly above.
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The Meaning of Composition. We stress that when we talk of composition
of protocols (or proof systems) we mean that the honest users are supposed to
follow the prescribed program (specified in the protocol description) that refers
to a single execution. That is, the actions of honest parties in each execution are
independent of the messages they received in other executions. The adversary,
however, may coordinate the actions it takes in the various executions, and in
particular its actions in one execution may depend also on messages it received
in other executions.

Let us motivate the asymmetry between the independence of executions as-
sumed of honest parties but not of the adversary. Coordinating actions in dif-
ferent executions is typically difficult but not impossible. Thus, it is desirable
to use composition (as defined above) rather than to use protocols that include
inter-execution coordination-actions, which require users to keep track of all ex-
ecutions that they perform. Actually, trying to coordinate honest executions
is even more problematic, because one may need to coordinate executions of
different honest parties (e.g., all employees of a big cooperation or an agency
under attack), which in many cases is highly unrealistic. On the other hand, the
adversary attacking the system may be willing to go into the extra trouble of
coordinating its attack on the various executions of the protocol.

Important Zero-Knowledge Technicalities. We shortly discuss seemingly
technical but actually fundamental variants on the basic definition of zero-
knowledge. In particular, these variants play an important role in our work.

Auxiliary inputs and non-uniformity: As mentioned above, almost all work on
zero-knowledge actually refer to zero-knowledge with respect to (non-uniform)
auxiliary inputs. This work is no exception, but (as in most other work) the refer-
ence to auxiliary inputs is typically omitted. We comment that zero-knowledge
with respect to auxiliary inputs “comes for free” whenever zero-knowledge is
demonstrated (like in this work) via a black-box simulator (see below). The
only thing to bear in mind is that allowing the adversary (non-uniform) auxil-
iary inputs means that the computational assumptions that are used need to be
non-uniform ones. For example, when we talk of computational-binding (resp.,
computational-hiding) commitment schemes we mean that the binding (resp.,
hiding) property holds with respect to any family of polynomial-size circuits
(rather than with respect to any probabilistic polynomial-time algorithm).

Black-box simulation: The definition of zero-knowledge (only) requires that the
interaction of the prover with any cheating (probabilistic polynomial-time) veri-
fier be simulateable by an ordinary probabilistic polynomial-time machine (which
interacts with no one). A black-box simulator is one that can simulate the interac-
tion of the prover with any such verifier when given oracle access to the strategy
of that verifier. All previous zero-knowledge arguments (or proofs), with the ex-
ception of the recent (constant-round) zero-knowledge argument of Barak [1],
are established using a black-box simulator, and our work is no exception (i.e.,
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we also use a black-box simulator). Indeed, Barak demonstrated that (contrary
to previous beliefs) non-black-box simulators may exist in cases where black-
box ones do not exist [1]. However, black-box simulators, whenever they exist,
are preferable to non-black-box ones, because the former offers greater security:
Firstly, as mentioned above, black-box simulators imply zero-knowledge with
respect to auxiliary inputs.3 Secondly, black-box simulators imply polynomial
bounds on the knowledge tightness, where knowledge tightness is the (inverse)
ratio of the running-time of any cheating verifier and the running-time of the
corresponding simulation [16, Sec. 4.4.4.2].4

Expected polynomial-time simulators: With the exception of the recent (constant-
round) zero-knowledge argument of Barak [1], all previous constant-round ar-
guments (or proofs) utilize an expected polynomial-time simulator (rather than
a strict polynomial-time simulator). (Indeed our work inherits this “feature”
of [17].) As recently shown by Barak and Lindell [2], this is no coincidence,
because all the above (with the exception of [1]) utilize black-box simulators,
whereas no strict polynomial-time black-box simulator can demonstrate the zero-
knowledge property of a constant-round argument system for a language outside
of BPP.

Types of Concurrent Composition. We shortly discuss various types of
asynchronous concurrent composition, starting with the pure asynchronous model
and ending with the synchronous (or parallel) model.

Perspective: the pure asynchronous model. Regarding the pure asynchronous
model, the current state of the art is as follows:

– Black-box simulator cannot demonstrated the concurrent zero-knowledge
property of non-trivial proofs (or arguments) having significantly less than
logarithmically many rounds (cf. Canetti et. al. [10]). By non-trivial proof
systems we mean ones for languages outside BPP, whereas by significantly
less than logarithmic we mean any function f : N → N satisfying f(n) =
o(log n/ log log n).

– Under standard complexity assumptions, every language in NP has a con-
current zero-knowledge proof with almost-logarithmically many rounds, and

3 In contrast, whether or not a non-black-box simulator implies zero-knowledge with
respect to auxiliary inputs, depends on the specific simulator: In fact, in [1], Barak
first presents (as a warm-up) a protocol with a non-black-box simulator that cannot
handle auxiliary inputs, and later uses a more sophisticated construction to handle
auxiliary inputs.

4 That is, a protocol is said to have knowledge tightness k :N→R if for some polynomial
p and every probabilistic polynomial-time verifier V ∗ the interaction of V ∗ with the
prover can be simulated within time k(n) · TV ∗(n) + p(n), where TV ∗ denotes the
time complexity of V ∗. In fact, the running-time of the simulator constructed by
Barak [1] is polynomial in TV ∗ , and so the knowledge tightness of his protocol is not
bounded by any fixed polynomial.
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this can be demonstrated using a black-box simulator (cf. [28], building
upon [25], which in turn builds upon [29]).

– Recently, Barak [1] demonstrated that the “black-box simulation barrier”
can be bypassed. With respect to concurrent zero-knowledge he only ob-
tains partial results: constant-round zero-knowledge arguments (rather than
proofs) for NP that maintain security as long as an a-priori bounded (poly-
nomial) number of executions take place concurrently. (Barak’s result also
relies on standard complexity assumptions, and the length of the messages
in his protocol grows linearly with this a-priori bound.)5

Thus, it is currently unknown whether constant-round arguments for NP may
be concurrent zero-knowledge (in the pure asynchronous model).

On the timing model: The timing model consists of the assumption that talking
about the actual timing of events is meaningful (at least in a weak sense) and
of the introduction of time-driven operations. The timing assumptions amount
to postulating that each party holds a local clock and knows a global bound,
denoted ρ ≥ 1, on the relative rates of the local clocks.6 Furthermore, it is pos-
tulated that the parties know a (pessimistic) bound, denoted Δ, on the message-
delivery time (which also includes the local computation and handling times).
In our opinion, these timing assumptions are most reasonable, and are unlikely
to restrict the scope of applications for which concurrent zero-knowledge is rel-
evant. We are more concerned about the effect of the time-driven operations
introduced in the timing model. Recall that these operations are the time-out
of in-coming messages and the delay of out-going messages (and the protocol
designer determines their duration). Typically (and in fact also in our work), the
delay period is at least as long as the time-out period,7 which in turn is at least

5 We are quite sure that Barak’s arguments remain zero-knowledge under concurrent
executions that satisfy the timing model. But since these are arguments (rather than
proofs) such a result will not improve upon the previously known result of [13] (which
uses black-box simulations).

6 Defining the rate of a clock is less straightforward than one may think. Firstly, clocks
(or rather their reading) are typically discrete, and thus their relative rate is a ratio
between pairs of reading (i.e., initial reading and final reading). Thus, rate must
be computed with respect to sufficiently long time intervals. In particular, these
intervals should be long enough such that the effect of a single change in the clock
reading (i.e., a single “clock tick”) can be neglected. Secondly, the clock rate may
change with time, and so the aforementioned time intervals should not be too long.
In the context of the current work, it is reasonable to measure the clock rate with
respect to time intervals of length Δ. Thus, when we say that the relative rate of
two clocks is ρ we mean that a time period of Δ units on one clock is measured as
at least Δ/ρ (and at most ρΔ) units on the other clock.

7 Following the conference presentation of this work, Barak and Micciancio raised the
possibility of using a delay period that is smaller and yet linearly related to the time-
out period. It seems plausible that, following their approach, security will deteriorate
exponentially with the constant of the said proportion. We stress that so far their
approach was not proved to work, but it does indicate that the common practice
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Δ (i.e., the time-out period must be at least as long as the pessimistic bound on
message-delivery time so not to disrupt the proper operation of the protocol).
This means that such use of these time-driven operations yields slowing down the
execution of the protocol (i.e., running it at the rate of the pessimistic message-
delivery time rather than at the rate of the actual message-delivery time, which
is typically much faster). Still, in absence of more appealing alternatives (i.e.,
a constant-round concurrent zero-knowledge protocol for the pure asynchronous
model), the use of the timing model may be considered reasonable. (We comment
that other alternatives to the timing-model include various set-up assumptions;
cf. [9, 11].)

On parallel composition: Given our opinion about the timing model, it is not
surprising that we consider the problem of parallel composition almost as impor-
tant as the problem of concurrent composition in the timing model. Firstly, it is
quite reasonable to assume that the parties’ local clocks have approximately the
same rate, and that clock drifting is corrected by occasional clock synchronization
(which is transcendental to the model). Thus, it is reasonable to assume that the
parties have approximately-good estimates of some global time. Furthermore, the
global time may be partitioned into phases, each consisting of a constant (e.g.,
5) number of rounds, so that each party wishing to execute the protocol just
delays its invocation to the beginning of the next phase. Thus, concurrent ex-
ecution of (constant-round) protocols in this setting amounts to a sequence of
(time-disjoint) almost-parallel executions of the protocol. Consequently, proving
that the protocol is preserves zero-knowledge under almost-parallel composition
suffices for ensuring the preservation of zero-knowledge in the aforementioned
concurrent setting. We stress that this setting assumes not only that the par-
ties’s clocks have practically the same rate, but also that the actual reading of
their clocks at each time is essentially identical. (Note that this setting is covered
by the notion of almost-parallel composition rather than parallel composition.)

1.5 Techniques

To discuss our techniques, let us fix a timing assumption (i.e., an a-priori bound
ρ on the local clock rates and a bound Δ on the message-delivery time) and
consider a c-round protocol that utilizes appropriately selected time-out and
delay mechanisms (which depend on the above bounds; e.g., timing-out in-
coming messages after Δ time units). The reader may think of the bound on the
relative rates of local clock as being close to 1 (or even just 1; i.e., equal rates),
and of c as being a constant (in fact, we will use c = 5). Furthermore, suppose
that all prover’s actions in the protocol are time-driven (by the time-out and
delay mechanisms, and that the corresponding time periods are Θ(Δ)).

A key observation underlying our work is that a concurrent scheduling (of
such protocol instances) under the timing model can be decomposed into a se-

(of using a delay period that is at least as long as the time-out period) may not be
inherent to the model.
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quence of parallel executions, called blocks, such that the number of simultane-
ously active blocks is bounded by O(c). That is, each block consists of protocol
instances that are executed almost in parallel, and the number of blocks that are
(pairwise) active at the same time is O(c), where two blocks are said to be active
at the same time if for some time t each block has a protocol instance that is
active at time t. The constant in the O-notation depends on the a-priori known
bound on the relative clock rates (as well as on the ratio between the time period
used in the time-driven operations). This decomposition applies whenever the
timing model is used (and is not restricted to the context of zero-knowledge),
and it may be useful towards the analysis of the concurrent execution of any set
of protocols under the timing model.

Let us clarify the above observation by providing a proof for a special (simple)
case. Our first simplifying assumption is that the clock rates are all equal. We
further assume that the prover utilizes equal delays between its messages, and
that these delays are four times the length of the time-out period, which is
defined as our basic time unit. Considering an arbitrary scheduling of protocol
instances, under the aforementioned timing model, we place a protocol instance
in the ith block if it is invoked during the ith time-interval (i.e., the time interval
(i− 1, i]). Then, each block consists of an almost-parallel execution of instances
of the protocol (i.e., the (j +1)-st message in any instance of block i is supposed
to be sent at time t+4j > i−1+4j and is timed-out at time t+4j+1 < i+4j+1,
where t ∈ (i−1, i] is the invocation time of this instance). Clearly, the ith and jth

blocks are simultaneously active (at some time) only if |i−j| < 4c, where c is the
number of rounds in the protocol. Thus, at most 8c+1 blocks are simultaneously
active.

In view of the above, it is quite natural to conjecture that in order to ana-
lyze the concurrent composition of protocols under the timing model it suffices
to deal with two extreme schedulings: the parallel scheduling and the bounded-
simultaneity scheduling. Indeed, this conjecture is essentially correct in the spe-
cial cases considered in this work (i.e., for certain zero-knowledge proofs).

Handling parallel composition. At first glance, one may be tempted to say that
the techniques used for proving that the Goldreich–Kahan (GK) protocol is
zero-knowledge (cf. [17] and Section 2.3) extend to showing that it remains zero-
knowledge under parallel composition. This would have been true if we were
handling coordinated parallel executions of the GK-protocol (where the prover
would abort all copies if the verifier decommits improperly in any of them).
However, this is not what we are handling here (i.e., parallel composition refers to
uncoordinated parallel execution of many copies of the protocol). Consequently,
a couple of new techniques are introduced in order to deal with the parallel
composition of the GK-protocol. We consider these simulation techniques to
be of independent interest, and note that they apply also for establishing the
preservation of zero-knowledge under almost-parallel composition.

Handling bounded-simultaneity concurrent composition. Experts in the area may
not find it surprising that the GK-protocol remains zero-knowledge under bounded-
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simultaneity concurrent composition. In fact, previous works (e.g., [13]) suggest
that the difficulty in simulating concurrent executions of the GK-protocol arises
from the case in which a large number of instances is executed in a “nested”
(and in particular simultaneous) manner.8 Furthermore, the work of Richardson
and Kilian [29] suggests that certain (related) protocols may be zero-knowledge
under bounded-simultaneity concurrent composition. Still, to the best of our
knowledge, such a technically-appealing result has not been proven before. We
prove the result by using a rather straightforward approach, which nevertheless
requires careful implementation. We stress that not every zero-knowledge proto-
col remains zero-knowledge under bounded-simultaneity concurrent composition
(e.g., Goldreich and Krawczyk [18] presented a simple (constant-round) proto-
col that is zero-knowledge, but parallel execution of two instances of it is not
zero-knowledge).

Handling the general case. Combining the techniques employed in handling the
two extreme cases, we show that (augmented with suitable timing mechanisms)
the GK-protocol is concurrent zero-knowledge under the timing model. This is
shown by using the abovementioned decomposition, and applying the bounded-
simultaneity simulator to the blocks while incorporating the parallel-composition
simulator inside of it (i.e., to the individual blocks). Note that, by definition, the
bounded-simultaneity simulator handles the special case in which each block
contains a single copy, and does so by employing the single-copy simulator. Cap-
italizing on the high-level similarity of the parallel-composition simulator and the
single-copy simulator, we just need to extend the bounded-simultaneity simulator
by incorporating the former simulator in it. (Our presentation of the bounded-
simultaneity simulator uses terminology that makes this extension quite easy.)

We stress that the combination of the treatments of parallel composition and
bounded-simultaneity composition into a treatment of concurrent composition
under the timing model is not generic, but rather refers to the specific structure
of the GK-protocol (and its stand-alone simulator). Still we believe that our
decomposition methodology may be useful in other settings.

1.6 Zero-Knowledge Versus Epsilon-Knowledge

Recall that epsilon-knowledge means that for every noticeable function (i.e., a
reciprocal of some positive polynomial) ε : N → (0, 1] there exists a simulator
working in time poly(n/ε(n)) that produces output that is ε-indistinguishable
from the one of a real interaction, where n denotes the length of the input and the
ensembles {Xα} and {Yα} are said to be ε-indistinguishable if for every efficient
procedure (e.g., a polynomial-time algorithm) D, it holds that

|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]| < ε(|α|) + μ(|α|)

8 In fact, even if each level of nesting only multiplies the simulation time by a factor
of 2, we get an exponential blow-up.
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where μ is a negligible function. (Indeed, the standard notion of computational
indistinguishability [21, 32] is a special case obtained by setting ε ≡ 0.)

Indeed, as mentioned in [13], epsilon-knowledge does provide some level of
security. However, this level of security is lower than the one offered by the
standard notion of zero-knowledge, and more so when compared to simulators
with bounded knowledge tightness (as discussed above; cf. [16, Sec. 4.4.4.2]).

Expected polynomial-time simulators versus epsilon-knowledge. The above dis-
cussion applies also to the comparison of epsilon-knowledge and zero-knowledge
via expected polynomial-time simulators (rather than via strict polynomial-time
simulators). Furthermore, simulation by an expected polynomial-time simulator
implies an epsilon-knowledge simulator (running in strict time inversely propor-
tional to the desired deviation).9 The converse does not hold (e.g., consider a
prover that, for i = 1, 2..., with probability 2−i sends the result of a BPTime(22i)-
complete computation).10

1.7 Relation to Shimon Even (A Personal Comment)

This work grew out of my sudden realization that the question of parallel compo-
sition of zero-knowledge protocols has not received the attention that it deserves.
Specifically, when asked for a protocol that preserves zero-knowledge under par-
allel composition, one would have referred to the preservation of zero-knowledge
under concurrent composition (possibly in the timing model). Thus, a poten-
tially easier problem was reduced to a harder problem, which is not the ‘right’
way to go. Things were even worst because, as argued in §1.4, the preservation of
zero-knowledge under parallel composition is a natural and important problem.

Readers that were fortunate to know Shimon well will immediately associate
the attitudes underlying the previous paragraph with him. Indeed, the moment
I reached the conclusion stated above, I got reminded of Shimon.

I then asked myself whether I already know of a simple protocol that preserve
zero-knowledge under parallel composition, and my immediate conjecture was
that this should be true of the GK-protocol. Once I proved this conjecture, which
turned out to be harder to establish than I’ve originally thought, I asked myself
whether this argument can be extended further (i.e., to concurrent composition
under the timing model). Thus, I have established results similar to those known
before, using a different approach that goes from a natural special case to the

9 To obtain a deviation of at most ε, we may truncate the runs of the original simulator
that exceed its expected running-time by a factor of 1/ε (or so).

10 We comment that even a stronger notion of ε-knowledge, by which the simulator’s
running-time is linear (rather than polynomial) in 1/ε does not seem to imply zero-
knowledge (via an expected polynomial-time simulator). Note that the naive attempt
(of converting the former simulator into one that establishes zero-knowledge) fails:
That is, selecting i with probability 2−i and invoking the former simulator with
ε = 2−i does yield an expected polynomial-time simulator, but its output may not
be computationally indistinguishable from the real interaction.
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general case. This entire development reminds me again of Shimon, because he
would have liked its course.

Finally, I wish to recall another connection to Shimon. In 1978, as an under-
graduate, I attended his course Graph Algorithms. At some point, one student
was annoyed at Shimon’s “untraditional” way of analyzing algorithms and asked
whether Shimon’s demonstrations constituted a proof and if so what is a proof.
Shimon answer was immediate, short and clear: A proof is whatever convinces
me. A few years later, when first seeing the definition of interactive proofs, I was
reminded of Shimon’s answer. I think that interactive proofs are a perfect for-
malization of Shimon’s intuition: interactive proofs are indeed convincing, and
essentially any convincing demonstration is actually an interactive proof.

1.8 Organization

In Section 2, we recall some basic notions as well as review the GK-protocol (i.e.,
the five-round zero-knowledge proof system of Goldreich and Kahan [17]). In
Section 3 we prove that the GK-protocol remains zero-knowledge under parallel
composition. In Section 4 we prove that the GK-protocol remains zero-knowledge
under bounded-simultaneity concurrent composition. The latter two sections can
be read independently of one another, and are believed to be of independent
interest.

In Section 5, we augment the GK-protocol with adequate time-out and
delay mechanisms, and prove that the resulting protocol is concurrent zero-
knowledge under the timing model. This is done by extending the simulator
presented in Section 4, where the extension relies on the ideas underlying the
simulator presented in Section 3. We conclude (cf. Section 6) by applying our
techniques to the zero-knowledge argument system of Bellare, Jakobsson and
Yung [4] and by presenting a class of protocols to which our techniques can be
applied.

2 Background

Zero-knowledge is a property of some prover-strategies. Loosely speaking, it
means that anything that is feasibly computable by (possibly improperly) in-
teracting with the prover, can be feasibly computable without interacting with
the prover. That is, the most basic definition of zero-knowledge (of a prover P
w.r.t a language L) requires that, for every probabilistic polynomial-time verifier
strategy V ∗, there exists a probabilistic polynomial-time simulator M∗ such that
the following two probability ensembles are computationally indistinguishable:

1. {〈P, V ∗〉(x)}x∈L
def= the output of V ∗ when interacting with P on common

input x ∈ L; and

2. {M∗(x)}x∈L
def= the output of M∗ on input x ∈ L.
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(The formulation can be easily extended to allow for auxiliary inputs to V ∗; cf.
Definition 3.) Recall that the ensembles {Xα}α∈S and {Yα}α∈S are said to be
computationally indistinguishable if, for every efficient procedure D, it holds that

|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]| < μ(|α|) (1)

where μ is a negligible function. Recall that μ : N → [0, 1] is called negligible if
it vanishes faster than the reciprocal of any positive polynomial (i.e., for every
positive polynomial p and all sufficiently large n, it holds that μ(n) < 1/p(n)).
We say that an event occurs with overwhelmingly high probability if it occurs with
probability that is negligibly close to 1 (i.e., the event occurs with probability
1 − μ, where μ is a negligible function). Indeed, our entire treatment will refer
to executions that are parameterized by some parameter, denoted n, which is
polynomially related to the length of some relevant input.

2.1 Expected Polynomial-Time Simulation and Black-Box
Simulation

As discussed in the introduction, we use two variants of the above definition
(or definitional schema): On one hand, we allow the simulator to run in expected
probabilistic polynomial-time (rather than strict probabilistic polynomial-time).
On the other hand, we require the simulator to be implementable by a universal
machine that gets oracle access to the (verifier) strategy V ∗. See [16, Sec. 4.3.1.6]
(resp., [16, Sec. 4.5.4.2] and [1]) for further discussion of the first (resp., second)
issue.

Definition 3 (black-box zero-knowledge):

Next message function: Let B be an interactive Turing machine, and x, z, r be
strings representing a common-input, auxiliary-input, and random-input, re-
spectively. Consider the function Bx,z,r(·) describing the messages sent by
machine B such that Bx,z,r(m) denotes the message sent by B on common-
input x, auxiliary-input z, random-input r, and sequence of incoming mes-
sages m. For simplicity, we assume that the output of B appears as its last
message.

Black-box simulator: We say that an expected probabilistic polynomial-time or-
acle machine M is a black-box simulator for the prover P and the language
L if for every polynomial-time interactive machine B, every probabilistic
polynomial-time oracle machine D, every positive polynomial p(·), all suffi-
ciently large x ∈ L, and every z, r ∈ {0, 1}p(|x|):∣∣Pr

[
DBx,z,r(〈P, Br(z)〉(x))=1

]
− Pr

[
DBx,z,r(MBx,z,r(x))=1

]∣∣ <
1

p(|x|)
where Bx,z,r is the next-message function define above, and Br(z) denotes
the interaction of machine B with auxiliary-input z and random-input r.
That is, 〈P, Br(z)〉(x) denotes the output of B, having auxiliary-input z and
random-input r, when interacting with P on common input x.

We say that P is black-box zero knowledge if it has a black-box simulator.
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Note that an auxiliary-input for the verifier is explicitly incorporated in Defi-
nition 3, whereas an auxiliary input for the prover is only implicit in it. That
is, P may be a probabilistic polynomial-time that is given an adequate addi-
tional information regarding the common input x as an auxiliary input (e.g., an
NP-witness that x ∈ L, in case L is in NP).

An important comment: Definition 3 suggests that it suffices to consider de-
terministic strategies for the adversary (verifier), because we quantify over all
possible choices of the random-input r (just as we do for all possible choices of
the auxiliary-input z). Thus, throughout the rest of this work we only consider
deterministic adversary strategies.

A tedious comment: Definition 3 is equivalent to a form in which the distin-
guisher D is given (x, z) (or (x, z, r)) as an auxiliary input, which is more con-
sistent with Eq. (1). In some sources, one consider distinguishers that get yet an
additional auxiliary input that is not given to the verifier’s strategy. It can be
shown that Definition 3 is also equivalent to the latter form (e.g., by using ad-
versaries that “typically” don’t read their entire auxiliary-input, and yet enable
the distinguisher (which runs for more time) to access this auxiliary-input).

2.2 Parallel and Concurrent Zero-Knowledge and the Timing
Model

The definitions of parallel and concurrent zero-knowledge are derived from Def-
inition 3 by considering appropriate adversaries (i.e., adversarial verifiers) that
invoke multiple copies of the (basic) protocol. For simplicity, we will assume
throughout this work that all copies are invoked on the same (common) input,
but the our results extend easily to the case in which the adversary determines
an arbitrary (common) input for each copy (on the fly). Each execution of such
an individual copy is called a session. In case of parallel zero-knowledge, we con-
sider adversaries that simultaneously invoke a polynomial number of sessions of
the protocol, and interact with this multitude of sessions in a synchronized way
(i.e., send their ith message in all sessions at the same time). In case of concur-
rent zero-knowledge, we consider adversaries that invoke a polynomial number
of sessions, and interleave their interaction with this multitude of sessions in an
arbitrary way. Such adversaries may determine the scheduling of message deliv-
ery events at the various sessions in a dynamic manner (i.e., depending on the
contents of all messages that have received so far); see Definition 4. In case of
concurrent zero-knowledge under the timing model, the prescribed protocol may
refer to time-driven operations (and the definition of the adversary may remain
almost intact). Details follow.

Definition 4 (adversary for the study of unrestricted concurrent composition):
An admissible adversary for concurrent composition of a prover P for membership
in L is a (deterministic) polynomial-time machine that, on input x ∈ L and
z ∈ {0, 1}poly(|x|), invokes polynomially many sessions of P , and interacts with
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them in an arbitrary order and manner. That is, based on (x, z) and all messages
it has received so far, the adversary iteratively performs one of the following
actions:

1. Invokes a new session of P on common input x.
2. Sends a message to one of the active sessions of P . It is assumed that this

session responds immediately, and thus the response becomes part of the se-
quence of messages received by the adversary.

3. Halts with a final output.

We stress that the active session of P selected in Case 2 is determined by the
adversary. This means that the adversary has free control on the scheduling of
messages received at the various sessions of P , and that it may schedule these
messages adaptively (i.e., based on all information it has obtained so far).

Definition 4 may also be used in the study of concurrent composition under
the timing model, but in such a case the adversary determines the exact timing
of the events (in Cases 1 and 2) and not merely their relative order. That is,
such an adversary annotates each action by a time value, where later actions
are never assigned smaller time values than previous actions. An alternative and
essentially equivalent formulation is presented next.

We recall that under the timing model, the presecribed prover strategy P
may contain time-driven operations. Specifically, it is natural for P to halt (in
a sesssion) when it detects that the verifier (it interact with) has violated the
message-delivery bound. Thus, we may assume without loss of generality, that
the adversary never violates the upper-bound on the message-delivery time; it
may instead send an illegal message at the “latest possible adequate” time (to
be discussed next). For simplicity, in this work, we consider only protocols in
which the presecribed verifier does not delay its messages (but rather answers
immediately).11 We also assume, without loss of generality, that all local clocks
are at most as fast as the real time, but they may be a factor ρ > 1 slower.
In such a case, the aforementioned latest possible adequate time is the upper-
bound on the message-delivery time as measured on a possibly slow local clock
(where the adversary may determine the rate of the latter clock). With these
conventions in mind, we re-define adversaries in the timing model as follows.

Definition 5 (adversary for the study of concurrent composition in the timing
model): Let Δ be an upper-bound on the message-delivery time and ρ be an
upper-bound on the clock rate. An admissible adversary in the timing model (with
parameters Δ and ρ) behave as in Definition 4, except that it responses to each
message sent by each session of P within 2ρΔ units of time after P sent the
said message. Formally, in each iteration, the adversary determines not only the
next event (of Cases 1 or 2) but rather also at what time this event takes place,

11 Typically, the time-driven operations are employed by the prescribed prover in order
to guarantee preservation of zero-knowledge in the timing-model. In this context,
the verifier is not trusted anyhow, and thus there seems to be no benefit in having
the prescribed verifier employ time-driven operations.
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and if the event is the sending of a message to an active session of P in which
an event took place at time t then the current (Case 2) event is assigned time
t′ ∈ [t, t + 2ρΔ].

Note that the adversary determines the timing in which each session of P is
invoked (i.e., Case 1) as well as the timing of each message delivery event (i.e.,
Case 2) for that session. The later timing is subject to avoiding detection (by
P ) of illegally slow message-delivery. Specifically, P may expects a response to
its last message within 2Δ units of time (which accounts for the possible delay
of its own message as well as the delay of the respose itself), but its own clock
may be slowed down by a factor of ρ. Indeed, we assume that the adversary can
determine P ’s clock rate, let alone know this rate.

An adversary for the study of parallel composition is obtained as a special case
of Definition 5. Such an adversary invokes all (new) sessions at exactly the same
time, and responses to all messages sent by these sessions exactly one unit of
time after these messages were sent. (Indeed, in this case we assume that Δ ≥ 1.)

An important technicality. As discussed by Canetti et. al. [10], Definition 3 is too
restrictive for serving as a basis for a definition of (unbounded) zero-knowledge
composition, where the adversary B may invoke a (polynomial) number of ses-
sions with P but this polynomial is not a-priori known. The problem is that the
universal (black-box) simulator may invoke (the next message function associ-
ated with) B only for a fixed polynomial (expected) number of times, whereas B
may describe a strategy that initiates a larger (polynomial) number of sessions
with P . One solution is to consider for each polynomial a different universal
simulator that can handle all adversaries that invoke at most a number of ses-
sions (with P ) that is bounded by that polynomial.12 For simplicity, we adopt
this solution here. We spell out the definition derived for the case of concurrent
composition in the timing model.

Definition 6 (simulator for the study of concurrent composition in the tim-
ing model): We say that P is (black-box) concurrent zero-knowledge for L in
the timing model if for every polynomial p there exists an expected probabilistic
polynomial-time oracle machine M such that for every p-time admissible (per
Definition 5) adversary V ∗, the following two probability ensembles are compu-
tationally indistinguishable:

1. {〈|||P , V ∗(z)〉(x)}x∈L ,z∈{0,1}p(x), where 〈|||P , V ∗(z)〉(x) denotes the output of
V ∗ after interacting with multiple sessions of P on common input x, where
V ∗ uses the auxiliary input z.

2. {MV ∗
x,z(x)}x∈L ,z∈{0,1}p(x), where V ∗

x,z denotes the next message function as-
sociated with V ∗.

As in Definition 3, the potential distinguishers are given oracle access to V ∗
x,z.

Note that if V ∗ outputs the timing of the message delivery events (in its real
interaction with the sessions of P ) then a good simulator must do the same.
12 An alternative solution is to provide the universal simulator with an auxiliary input

that specifices (in unary) the running time of the verifier.
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2.3 The Goldreich–Kahan (GK) Protocol

Loosely speaking, the Goldreich–Kahan (GK) proof system for Graph 3-Color-
ability (G3C) proceeds in four steps:

1. The verifier commits to a challenge (i.e., sequence of edges in the input
graph).

2. The prover commits to a sequence of values (i.e., the colors of each vertex
under several random relabelings of a fixed 3-coloring of the graph). This
sequence is partitioned into subsequences, each corresponding to a different
random relabeling of the coloring of the graph.

3. The verifier decommits (to the edge-sequence).
4. If the verifier has properly decommits then the prover decommits to a sub-

set of the values as indicated by the decommitted challenge. Otherwise the
prover sends nothing.
Specifically, the challenge is a sequence of edges, each associated with an
independently selected 3-coloring of the graph, and the prover responses to
the ith edge by decommitting to the values in the ith committed coloring
that correspond to the end-points of the ith edge.

A detailed description of the above protocol is provided in Construction 7 (be-
low). We note that many of the specific details are not important to our analysis,
and are provided merely for sake of clarity. We highlight a couple of points that
are relevant to the analysis: Firstly, the prover’s commitment is via a commit-
ment scheme that is (perfectly-binding but only) computationally-hiding, and
so commitments to different values are (only) computationally-indistinguishable
(which considerably complicates the analysis; cf. [17]). Secondly, the verifier’s
commitment is via a commitment scheme that is (perfectly-hiding but only)
computationally-binding, and so it is (only) infeasible for it to properly decom-
mits in two different way (which slightly complicates the analysis).

Implementation Details: The Goldreich–Kahan protocol [17] utilizes two “dual”
commitment scheme (see terminology in [16, Sec. 4.8.2]). The first commitment
scheme, denoted C, is used by the prover and has a perfect-binding property. For
simplicity, we assume that this scheme is non-interactive, and denote by C(v) a
random variable representing the output of C on input v (i.e., a commitment to
value v).13 The second commitment scheme, denoted C, is used by the verifier
and has a perfect-hiding property. Such a scheme must be interactive, and we
assume that it consists of the receiver sending a random index, denoted α, and
the committer responds by applying the randomized process Cα to the value it
wishes to commit to (i.e., Cα(v) = C(α, v) represents a commitment to v relative
to the receiver’s message α). Consequently, Step 1 in the high-level description
is implemented by Steps P0 and V1 below.
13 Non-interactive perfectly-binding commitment schemes can be constructed using any

one-to-one one-way function. In case one wishes to rely here only on the existence
of one-way functions, one may need to use Naor’s two-round perfectly-binding com-
mitment scheme [27]. This calls for a minor modification of the description below.
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Construction 7 (The GK zero-knowledge proof for G3C):

Common Input: A simple (3-colorable) graph G=(V, E).
Let n

def= |V |, V = {1, ..., n}, and t
def= 2n · |E|.

Auxiliary Input to the Prover: A 3-coloring of G, denoted ψ.
Prover’s preliminary step (P0): The prover invokes the commit phase of the

perfectly-hiding commitment scheme, which results in sending to the veri-
fier a message α.

Verifier’s commitment to a challenge (V1): The verifier uniformly and indepen-
dently selects a sequence of t edges, e

def= ((u1, v1), ..., (ut, vt)) ∈ Et, and
sends to the prover a random commitment to these edges. Namely, the veri-
fier uniformly selects s ∈ {0, 1}poly(n), and sends c

def= Cα(e, s) to the prover.
Motivating Remark: At this point the verifier is effectively committed to a
sequence of t edges. (This commitment is of perfect secrecy.)

Prover’s commitment step (P1): The prover uniformly and independently selects
a sequence of t random relabeling of the 3-coloring ψ, and sends the verifier
commitments to the color of each vertex under each of these colorings. That
is, the prover uniformly and independently selects t permutations, π1, ..., πt,
over {1, 2, 3}, and sets φj(v) def= πj(ψ(v)), for each v ∈ V and 1 ≤ j ≤
t. It uses the perfectly-binding commitment scheme to commit itself to the
colors of each of the vertices according to each 3-coloring. Namely, the prover
uniformly and independently selects r1,1, ..., rn,t ∈ {0, 1}n, computes ci,j =
C(φj(i), ri,j), for each i ∈ V and 1 ≤ j ≤ t, and sends c1,1, ..., cn,t to the
verifier.

Verifier’s decommitment step (V2): The verifier decommits the sequence e =
((u1, v1), ..., (ut, vt)) to the prover. Namely, the verifier send (s, e) to the
prover.
Motivating Remark: At this point the entire commitment of the verifier is
revealed. The verifier now expects to receive, for each j, the colors assigned
by the jth coloring to vertices uj and vj (i.e., the endpoints of the jth edge
in e).

Prover’s partial decommitment step (P2): The prover checks that the message
just received from the verifier is indeed a valid revealing of the commitment c
made by the verifier at Step (V1) (i.e., it checks that c = Cα(e, s) indeed holds
and that e ∈ Et). Otherwise the prover halts immediately. Let us denote the
sequence of t edges, just revealed, by (u1, v1), ..., (ut, vt). The prover reveals
(to the verifier), for each j, the jth coloring of vertices uj and vj, along
with appropriate decommitment information. Namely, the prover sends to
the verifier the sequence of four-tuples

(ru1,1, φ1(u1), rv1,1, φ1(v1)), ..., (rut,t, φt(ut), rvt,t, φt(vt))

Verifier’s local decision step (V3): The verifier checks whether, for each j, the
values in the jth four-tuple constitute a correct revealing of the commit-
ments cuj ,j and cvj ,j, and whether the corresponding values are differ-
ent. Namely, upon receiving (r1, σ1, r

′
1, τ1) through (rt, σt, r

′
t, τt), the verifier
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checks whether for each j, it holds that cuj ,j = C(σj , rj), cvj ,j = C(τj , r
′
j),

and σj �= τj (and both are in {1, 2, 3}). If all conditions hold then the verifier
accepts. Otherwise it rejects.

Goldreich and Kahan proved that Construction 7 constitutes a (constant-round)
zero-knowledge interactive proof for Graph 3-Colorability [17]. (We briefly re-
view their simulator below.) Our first goal, undertaken in Section 3, is to show
that the zero-knowledge property (of Construction 7) is preserved under paral-
lel composition. We later extend the result to yield concurrent zero-knowledge
under the timing-model.

High level description of the simulator used in [17]. The simulator (using oracle
access to the verifier’s strategy) proceeds in three main steps:

The Scan Step: The simulator emulates Steps (P0)–(V2), by using commitments
to dummy values in Step (P1), and obtains the verifier’s decommitment for
Step (V2), which may be either proper or not. In case of improper decommit-
ment the simulator outputs the partial transcript just generated and halts.
Otherwise, it records the sequence (u1, v1), ..., (ut, vt), just revealed, and pro-
ceeds as follows.

The Approximation Step: For technical reasons (discussed below), the simulator
next approximates the probability that the first scan (or rather the emulation
of Steps (P1)–(V2)) ended with a proper decommitment. (This is done by
repeated trials, each as in the first scan, until some polynomial number of
proper decommitments is found.)

The Generation Step: Using the (proper) decommitment information (i.e., the
edge sequence (u1, v1), ..., (ut, vt)), obtained in the first scan, the simulator
repeatedly tries to generate a full transcript by emulating Steps (P1)–(V2),
using commitments to “pseudo-colorings” that do not “violate the coloring
conditions imposed by the decommitted edges”. That is, in each trial, the
simulator sets ci,j to be a commitment to a dummy value if i �∈ {uj, vj},
and sets cuj ,j and cvj ,j to be commitments to two different random values
in {1, 2, 3}. The number of trials is inversely proportional to the probability
estimated in the approximation step.

This completes the (high level) description of the simulator used in [17]. We
conclude this section with a discussion of the purpose of the Approximation
Step.

The purpose of the Approximation Step. The foregoing simulation procedure is
a variant of the more natural (and in fact naive) procedure in which the Approx-
imation Step is omitted and the Generation Step is repeated (indefinitely) untill
a full transcript is generated. The problem with the naive variant is that the
probability (denoted p) of proper verifier decommitment during the Scan Step is
not identical to the probability (denoted p′) of a proper verifier decommitment
during the Generation Step. The difference is due to the fact that in the Scan
Step we feed the verifier with commitments to dummy values, whereas in the
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Generation Step we feed the verifier with commitments to “pseudo-colorings”.
Indeed, the hiding property of commitment schemes guarantees that |p − p′| is
negligible (in n), but this does not mean that p/p′ is upper-bounded by a poly-
nomial in n (e.g., p = 2−n/3 and p′ = 2−n/2). Thus, the expected running-time
of the naive simulation procedure (i.e., (p/p′)·poly(n)) is not necessarily polyno-
mial. This problem is resolved by the actual simulation procedure of [17] outlined
above, whose running time is p · poly(n)

p̃ , where p̃ = Θ(p) is the approximation
of p (obtained in the Approximation Step, and p̃ = Θ(p) holds with probability
1− 2−poly(n)).

An alternative approach. An alternative way of coping with the aforementioned
problem is to use a different protocol that allows for the Scan Step to use the same
distribution as in the Generation Step. This approach was recently pursued by
Rosen [30], who suggested an alternative constant-round zero-knowledge proof
for NP (by adapting the protocol of [29]). Rosen’s protocol could be applied
in the context of the current paper and yield a noticeable simplification of the
proof of our main results (of Sections 3–5), but this will not allow to obtain the
secondary results presented in Section 6 (which refer to protocols that do not
satisfy the stronger property stated above). Furthermore, using Rosen’s protocol
avoids a natural problem that we would like to treat in the current paper, because
this problem is likely to arise in future work (where, like in Section 6, it may not
be avoided).

3 Simulator for the Parallel Case

Recall that the GK-protocol proceeds in four (abstract) steps:

1. The verifier commits to a challenge.
(The actual implementation is by two rounds/messages.)

2. The prover commits to a sequence of values.
(The challenge specifies a subset of the locations in the latter sequence.)

3. The verifier decommits to its challenge (either properly or not).
4. Pending on the verifier’s proper decommitment, the prover decommits to the

corresponding values.

The basic approach towards simulating this protocol (without being able to
answer a random challenge) is to first run the first three steps with prover-
commitments to arbitrary (dummy) values, obtaining the challenge, and then
rewind to Step 2 and make a prover-commitment that passes this specific chal-
lenge (alas no other challenge). In case the verifier always decommits properly,
this allows to easily simulate a full run of the protocol. In case the verifier always
decommits improperly, things are even easier because in this case we only need
to simulate Steps 1–3. The general case is when the verifier decommits with some
probability. Intuitively, this can be handled by outputting the initial transcript of
Steps 1–3 in case it contains an improper decommitment, and repeatedly trying
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to produce a full passing transcript (as in the first case) otherwise. Difficulties
arise in case the probability of proper verifier decommitment is small but not
negligible and furthermore when it depends (in a negligible way) on whether the
prover commits to dummy or to “passing” values. Indeed, the focus of [17] is
on resolving this problem (and their basic approach is to approximate the prob-
ability of proper decommitment in case of dummy values, and keep trying to
produce a full passing transcript for at most a number of times that is inversely
proportional to the latter probability).

The problem we face here is more difficult: several (say n) sessions of the
protocol are executed in parallel and the verifier may properly decommit in
some of them but not in others. Furthermore, the verifier decision regarding in
which sessions it properly decommits may depend on the prover’s messages in
all sessions. That is, in the general case, each (parallel) execution of Steps 1-3
may yield a different configuration (out of 2n possible ones) of proper/improper
decommitment in the n sessions. Still, we need to simulate a transcript of all
steps in sessions in which the verifier commits properly. Thus, the naive gener-
alization of the case n = 1 (which consists of insisting on generating the same
configuration as in the initial run) will not work.14 Instead, referring to the n
probabilities that correspond to proper decommitment in each of the n sessions,
we add additional rewindings in which we try to obtain a proper decommit
from all sessions that have at least as high a probability as the sessions that
actually performed proper-decommitment in the initial simulated run. That is,
letting p denote the minimum probability of proper-decommitment taken only
over the sessions that have proper-decommitted in the initial run, we try to ob-
tain the challenges of all sessions having proper-decommitment probability at
least p. Once these challenges are obtained, we try to generate a parallel run
in which only sessions having at least as high a probability (but not necessarily
all of them!) properly decommit. Furthermore, in order not to skew the distri-
bution (towards high proper-decommitment probabilities), we insist on having
at least one session with a corresponding probability as low as some session in
the initial run. That is, we try to generate a parallel run in which only sessions
having proper-decommitment probability at least p perform proper-decommit,
while insisting that at least one session having proper-decommitment probability
approximately p performs proper-decommit.

One obvious problem with the above description is that we do not know
the relevant proper-decommitment probabilities. Indeed, we may obtain good
(multiplicative) approximation of them, but using these approximations in a
straightforward manner will not do (because such approximations do not allow

14 We refer to a procedure that obtains some challenges via an initial “dummy” exe-
cution of Steps 1-3, and next tries to produce an adequate simulation by repeatedly
rewinding Steps 2-4 until one obtains again the same configuration. This may fail
because all 2n configurations may be equally likely, in which case the simulation is
expected to make 2n trials.
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to rank the actual probabilities).15 Instead, we cluster the n sessions according
to the probability that each of them properly decommits, and try to obtain a
proper decommit from all the sessions that are in the same (or heavier) cluster
as the sessions that properly decommit in the initial simulated run. Once this is
obtained, we try to generate a parallel run in which only sessions that belong to
the above (or heavier) cluster (but not necessarily all of them) properly decom-
mit. As one may expect, clusters are defined according to threshold probabilities,
but picking these thresholds naively (e.g., as fixed quantities) is going to fail.
Below, we will pick these thresholds at random from fixed intervals.

3.1 A High Level Description

Recall that our aim is to analyze the parallel execution of the GK-protocol.
Specifically, we will consider n sessions of the protocol, being executed in parallel
under the coordinated attack of an adversary (called a verifier) that plays the
role of the verifier in all sessions. The parameter n is polynomially related to
the length of the input to each of these sessions, and thus we deal with the
general case of parallel composition (of the GK-protocol). When we say that
some quantities are negligible or overwhelmingly high we refer to these quantities
as a function of the parameter n.

The following basic notions are central to our analysis (of the parallel execu-
tion of the GK-protocol): An execution of a session (of the GK-protocol) is said
to properly decommit if the verifier message in Step 3 is a valid decommitment
to its (i.e., the verifier’s) commitment in Step 1. In the first part of the simu-
lation, we use prover’s commitments to arbitrary values, which are referred to
as commitment to dummy values. Later (in the simulation) we use commitments
to values that will pass for a certain challenge (which is understood from the
context). These are called commitment to passing values.16 In addition, we also
refer to the following more complex notions and notations:

– Let pi denote the probability that the verifier properly decommits in the
ith session (of the parallel run), when Step 2 is played with commitment to
dummy values. Assuming that the adversary (verifier) is deterministic (see
Section 2.1), we treat the Step 1 message as fixed.17 Thus, the probability

15 Consider, for example, the case that each of the sessions properly decommits with
probability (1/2) ± ε(n) for some negligible function ε or even for ε(n) = 1/t(n),
where t(n) is the running time of our approximation procedure.

16 Recall that in the actual implementation (of the GK-protocol), challenges correspond
to sequences of t edges (over the vertex-set {1, 2..., n}), and the prover commits to a
sequence of t · n values in {1, 2, 3} (i.e., a block of n values per each of the t edges).
For a given edge sequence (i.e., a challenge), a passing sequence of values is one in
which (for every i) the values assigned to the ith block are such that the endpoints
of the ith edge (in the challenge) are assigned a (random) pair of distinct elements.

17 In the actual implementation, we will fix a random value for the prover’s initial
choice of α, which in turn determines the transcript of Step 1.
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space (underlying pi) consists solely of the prover’s actions (i.e., choice of
commitment) in Step 2.
(When using other commitments (e.g., passing commitments) the probability
of proper decommitment may be any p′i such that |p′i − pi| is negligible.)

– We will use a sequence of thresholds, denoted t1, ..., tn, that will be de-
termined (probabilistically) on the fly such that with overwhelmingly high
probability it holds that
1. tj ∈ (2−(j+1), 2−j),
2. no pi lies in the interval [tj ± (1/9n) · 2−j ].

Such tj ’s exist and tj can be found when given approximations of all pi’s

up-to (1/9n) · 2−j (or so). We also define t0
def= 1, and so pi ≤ t0 for all i. We

assume, without loss of generality, that for every i it holds that pi > 2−n,
and so each pi lies in one of the intervals (tj , tj−1].

– For such tj ’s, define Tj = {i : pi > tj}. (Indeed, T0 = ∅, Tj−1 ⊆ Tj for all j,
and Tn = {1, ..., n}.)
Membership in Tj can be determined (probabilistically with negligible error
probability) in time poly(n) · 2j, since tj was selected to be sufficiently far-
away from all the pi’s (i.e., |tj − pi| = Ω(2−j/n)).

– Referring to a specific run of the parallel execution, we denote by Ej the
event that the verifier properly decommits to some session in Tj \ Tj−1 but
to no session outside Tj. That is, we consider the set of sessions in which the
verifier properly decommits in the specific run (of the parallel execution),
and say that Ej holds if j is the minimum integer such that the said set
contains an element of Tj. (Equivalently, j is the minimum integer such that
the said set contains an element of Tj \ Tj−1.)
Let qj = Pr[Ej ], when Ej refers to a random run with dummy values, where
the probability is taken over the choice of prover’s commitments to these
dummy values. Note that qj ≤ n · tj−1 (because Ej mandates that the
verifier properly decommits to some session in Tj \ Tj−1, which implies one
of |Tj \ Tj−1| ≤ n events, each occuring with probability at most tj−1).
However, qj may be much smaller than tj < tj−1, because the event Ej

refers to n possibly dependent events (occurring in n sessions).
Since {1, ..., n} = Tn ⊇ Tn−1 · · · ⊇ · · ·T1 ⊇ T0 = ∅, whenever the veri-
fier properly decommits in some session, one of the events Ej (for j ≥ 1)
must hold. Otherwise (i.e., whenever the verifier decommits improperly in
all sessions), we say that event E0 holds.

We now turn to the simulator, which generalizes the one in [17]. All approxima-
tions referred to below are quite good w.v.h.p. (i.e., with 1− 2−n each approxi-
mation is within a factor of (1+(1/poly(n)) of the corresponding value). Loosely
speaking, after fixing the verifier’s coins (at random), the simulator proceeds as
follows (while using the residual verifier strategy as a black-box):

Step S0: Obtain the verifier’s commitments (of Step 1) in the n parallel ses-
sions.
For more details on this and other steps, see Section 3.3.



Concurrent Zero-Knowledge with Timing, Revisited 51

Step S1: The purpose of this step is to generate an index j ∈ {0, 1, ..., n} with
distribution corresponding the probability that event Ej holds for a random
parallel execution of the protocol, as well as to determine the sets Tj and
Tj−1 (as defined above, based on adequate thresholds tj and tj−1, which will
be selected too). This has to be done in expected polynomial time. Recalling
that event Ej occurs with probability O(n/2j), when we select a specific j,
we may use poly(n) · 2j steps.
We stress that we only determine the sets Tj and Tj−1, for the specific j that
is selected, rather than determine all sets (i.e., T1, ..., Tn). The sets Tj and
Tj−1 will allow us to determine (in subsequent steps) whether or not event
Ej holds for other random parallel executions of the protocol.
The selection of j as well as the determination (or construction) of the sets
Tj and Tj−1 is achieved as follows:
1. First we simulate Steps 2–3 of the (parallel execution of the) protocol,

while using (in Step 2) commitments to dummy values. Based on the
verifier’s decommitments in Step 3 (of the parallel execution), we de-
termine the set I ⊆ [n] of sessions in which the verifier has properly
decommitted.

2. Next, we determine an appropriate sequence t1, ..., tj of thresholds such
that event Ej holds for the simulated run. Specifically, we determine the
tj ’s on the fly, starting with t1, until we see that Ej holds. Thus, we stop
without determining tj+1, ..., tn.

3. Finally, using tj−1 and tj , we determine for each i ∈ {1, 2, ..., n} whether
or not pi > tj (i.e., i ∈ Tj) and whether or not pi > tj−1 (i.e., i ∈ Tj−1).

Indeed, the above description (especially of the second sub-step) does not
specify how the corresponding actions are performed (let alone within time
poly(n) · 2j). We defer these crucial details to Section 3.2, where we show
how to actually implement the current step within time poly(n) · 2j.

Step S2: For each session i ∈ Tj , we wish to obtain the challenge committed to
in Step 1, while working within time poly(n) · 2j. This is done by rewinding
and re-simulating Steps 2–3 for at most poly(n) · 2j times, while again using
(in Step 2) commitments to dummy values.

Step S3: For technical reasons18, analogously to [17], we next obtain a good
(i.e., constant factor) approximation of qj = Pr[Ej ]. This approximation,
denoted q̃j , will be obtained within expected time poly(n)/qj by repeated
rewinding and re-simulating Steps 2–3. (Specifically, we continue till we see
some fixed polynomial number (say n5) of runs in which event Ej holds.)

Step S4: We now try to generate a simulation of Steps 2–3 in which event
Ej occurs. However, unlike in previous simulations, here we use (in Step 2)
commitments to values that pass the challenges that we have obtained. This
will allow us to simulate also Step 4, and complete the entire simulation.
Specifically, we make at most poly(n)/q̃j trials to rewind and re-simulate
Steps 2–3, while using (in Step 2 of each session in Tj) commitments to values

18 We refer the reader to the end of Section 2.3 for a discussion of the purpose of the
approximation step. Note that this step could have been eliminated if we had follows
Rosen’s alternative approach (also discussed at the end of Section 2.3).
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that pass the corresponding challenge (which we obtained in Step S2). If the
verifier answers (for Step 3) fit event Ej then we proceed to simulate Step 4
in the obvious manner. Otherwise, we rewind and try again (but never try
more than poly(n)/q̃j times).

A more detailed description of the above steps is provided in Sections 3.2 and 3.3.
A detailed analysis of the simulator is provided in Section 3.4, relying on the
following observations:

1. Pending on the ability to properly implement Step S1, the (overall) expected
running time of the simulation is some fixed polynomial, because each at-
tempt (in Steps S2, S3, and S4) is repeated for a number of times that is
inversely proportional to the probability of entering this repeated-attempts
step. Specifically, each of these steps is repeated at most (poly(n)/q̃j) ≈
(poly(n)/qj) times (use qj = O(n · 2−j) for Step S2), whereas j is selected
with probability qj .

2. The computational-binding property of C implies that we rarely get into
trouble in Step S4; that is, only with negligible probability will it happen
that in Step S4 the verifier properly decommits to a value different from the
one to which it has properly decommitted in Step S2.

3. Since the probabilities of verifier’s proper-decommitment (in Step 3) are
almost unaffected by the prover’s commitments (of Step 2) and since passing
commitments look like commitments to truly valid values, the simulated
interaction is computationally indistinguishable (cf. [21, 32]) from the real
one.

3.2 Setting the Thresholds and Implementing Step S1

One naive approach is to try to use fixed thresholds such as tj = 2−j . However,
this may not allow to determine (for a given i), with high probability and within
time poly(n) · 2j , whether or not pi is smaller than tj . (The reason being that pi

may be very close to 2−j; e.g., |pi − 2−j| = 2−2n.)
Instead, the tj ’s will be selected in a more sophisticated way such that they

are approximately as above (i.e., tj ≈ 2−j) but also far enough (i.e., at distance at
least 2−j/9n) from each pi. This will allow us to determine, with high probability
and within time poly(n) ·2j , whether or not pi is smaller than tj . The question is
how to set the tj ’s such that they are appropriately far from all pi’s. Since the pi’s
are unknown probabilities (which we can only approximate), it seems infeasible
to come-up with a deterministic setting of the tj ’s. Indeed, we will settle for
a probabilistic setting of the tj ’s (provided that this setting is independent of
other events).

Recall that Step S1 calls for the setting of t1, ..., tj such that event Ej holds
(for a random run), where whether or not event Ej holds depends on tj and tj−1.
Furthermore, it is important that the setting of tj−1 in case event Ej holds be
the same as the setting of tj−1 in case event Ej−1 holds. Moreover, recalling that
the setting of tj must be performed in time poly(n)·2j , we cannot afford to set all
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tk’s whenever we set a specific tj . Still, we provide below an adequate threshold-
setting process. We start with the following key procedure, which selects tj ≈ 2−j

such that with overwhelmingly high probability |pi − tj | > 2−j/9n for every i.
We stress that the following procedure (has to run and indeed) runs in time
poly(n) · 2j , which requires a slightly non-straightforward implementation.19

Procedure T (j, n), returns tj ∈ [(3/4)± (1/8)] · 2−j ⊂ (2−(j+1), 2−j): The proce-
dure first approximates all pi’s sufficiently well, and then sets tj in the desired
interval such that tj is sufficiently far from all the approximated values of the
pi’s. A specific implementation follows.

1. For i = 1, ..., n, the procedure approximates pi sufficiently well (in the follow-
ing sense, which is motivated in Footnote 19). Specifically, with overwhelm-
ingly high probability, the approximated value, denoted ai, should satisfy:
(a) If pi < 2−j−2 then ai < 2−j−1.
(b) If pi > 2−j+1 then ai > 2−j.
(c) If 2−j−2 ≤ pi ≤ 2−j+1 then |ai − pi| < (1/19n) · 2−j .
Each approximation is produced in time poly(n) · 2j as follows. First, we
decide whether or not pi ≥ 2−j−2. Actually, we distinguish with overwhelm-
ingly high probability, between the case pi ≥ 2−j−2 and (say) the case
pi < 2−j−3, where in the intermediate range any decision is admissible.
Likewise, we decide whether or not pi ≤ 2−j+1 (i.e., distinguish between the
case pi ≤ 2−j+1 and the case pi > 2−j+2). These decisions can be made
using poly(n) · 2j trials. In case we decided that pi ∈ [2−j−2, 2−j+1], we
approximate pi up-to an additive deviation of (1/19n) · 2−j , which can be
implemented using poly(n) · 2j trials (because it calls for an approximation
to within a factor of 1±Θ(1/n)). Otherwise, we output the threshold value
(i.e., ai = 2−j−2 if we decided that pi < 2−j−2 and ai = 2−j+1 if we decided
that pi > 2−j+1).
Note that if pi < 2−j−2 then both ai = 2−j−2 and ai = pi ± 2−j/19n
satisfy ai < 2−j−1. Similarly, if pi > 2−j+1 then both ai = 2−j+1 and
ai = pi ± 2−j/19n satisfy ai > 2−j. Finally, if 2−j−2 ≤ pi ≤ 2−j+1 then we
decided that pi ∈ [2−j−2, 2−j+1] and produced ai = pi±2−j/19n as required.

2. Starting from a set of evenly spaced points in the desired interval (i.e.,
{(5/8), (5/8) + (1/4n), ..., (5/8) + (n/4n)}), we discard all points that are
close to one of the ai’s obtained in Step 1. Specifically, the procedure deter-
mines

K
def=

{
k ∈ {0, 1, ..., n} : (∀i) ai /∈

(
5
8

+
k

4n
± 1

8n

)
· 2−j

}
.

(2)

19 The straightforward approach is to approximate each pi up to an additive deviation
of Θ(2−j/n). The problem is that, in general, this requires Ω((2−j/n)−2) samples.
However, for pi ≈ 2−j , such an additive approximation translates to a multiplicative
approximation of 1 ± Θ(1/n), which can be obtained based on a sample of size
poly(n)/pi = poly(n) · 2j . We note that, for pi �∈ [2−j−2, 2−j+1], a more crude
approximation suffices, and can be obtained using a sample of size poly(n) · 2j .
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That is, ai rules out the value k if ai ∈ (5n+2k±1) ·2−j/8n. Note that K is
not empty, because each ai can rule out at most one element of K (whereas
|{0, 1, ..., n}| = n + 1 and they are only n values of i).
Select an arbitrary (say at random or the first) k ∈ K. Output tj = ((5/8)+
(k/4n)) · 2−j.

By construction, |tj − ai| ≥ (1/8n) · 2−j , for all i’s. If pi ∈ [2−j−2, 2−j+1] then
|ai − pi| ≤ (1/19n) · 2−j (with overwhelming probability), and it follows that pi

does not fall in the interval tj±(1/9n)·2−j (because |pi−tj | ≥ |ai−tj|−|ai−pi| ≥
((1/8n)− (1/19n)) · 2−j > (1/9n) · 2−j). Otherwise (i.e., if either pi < 2−j−2 or
pi > 2−j+1), pi does not fall in the interval tj ± (1/9n) · 2−j ⊂ (2−j−2, 2−j+1)
(simply by the case hypothesis). We conclude that, with overwhelming proba-
bility, no pi falls in the interval tj ± (1/9n) · 2−j.

Implementation of Step S1: Recall that the purpose of Step S1 is to generate an
index j ∈ {0, 1, ..., n} with distribution corresponding the probability that event
Ej holds (for a random parallel run of the protocol), as well to determine the
thresholds t1, ..., tj , and using these to determine for every i = 1, ..., n, whether
or not i ∈ Tj and whether or not i ∈ Tj−1. We thus start by generating a random
run, and next determine all necessary objects with respect to it.

1. Generating a reference run: Simulate Steps 2–3 of the (parallel execution
of the) protocol, while using (in Step 2) commitments to dummy values.
Based on the verifier’s decommitments in Step 3 (of the parallel execution),
determine the set I ⊆ [n] of sessions in which the verifier has properly
decommitted.

2. Determining the event Ej occuring in the reference run, as well as the sets
Tj and Tj−1:

Case of empty I: Set j = 0 and Tj = Tj−1 = ∅.
Case of non-empty I: Set t0 = 1 and T0 = ∅. For j = 1, ..., n do

(a) tj ← T (j, n). (We stress that the value of tj is set obliviously of I.)
(b) Determine the set Tj by determining, for each i, whether or not

pi > tj . We use approximations to each pi (as computed in procedure
T (j, n)), and rely on |pi − tj | > (1/9n) · 2−j. Recall that for each i,
we obtain an approximation ai such that |ai − pi| < (1/9n) · 2−j if
2−j−2 ≤ pi ≤ 2−j+1 and ai < 2−j−1 ≤ tj (resp., ai > 2−j ≥ tj) if
pi < 2−j−2 < tj (resp., if pi > 2−j+1 > tj). Thus, we may decide
that pi > tj if and only if ai > tj .

(c) Decide whether or not event Ej holds for the reference run, by using
Tj−1 (of the previous iteration) and Tj (just computed). Recall that
event Ej holds (for the reference run) if and only if both I ⊆ Tj and
I �⊆ Tj−1 hold.
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(d) If event Ej holds then exit the loop with the current value of j as
well as with the values of Tj and Tj−1. Otherwise, proceed to the
next iteration.

Since we have assumed that (∀i) pi > 2−n, some event Ej must hold.20

A key point in the analysis is that the values of the Tk’s, as determined by
Step S1 (i.e., T0, ..., Tj), are independent of the value of j. Of course, which of
the Tk’s were determined does depend on the value of j. Thus, we may think
of Step S1 as of an efficient implementation of the mental experiment in which
all Tk’s are determined, next j is determined accordingly (analogously to the
above), and finally one outputs Tj and Tj−1 for subsequent use.

3.3 A Detailed Description of the Simulator

For sake of clarity we present a detailed description of the simulator, before
turning to its analysis. Recall that our aim is to simulate a parallel execution
of n sessions of the GK-protocol. We start by selecting and fixing the verifier’s
coins at random. With respect to these fixed coins, we simulate the interaction
of the residual deterministic verifier (with sessions of the predetermined prover)
as follows:

Step S0: We simulate the parallel execution of Step 1 (i.e., Steps P0 and V1
of Construction 7) as follows. First, acting as the real prover in Step P0,
we randomly generate messages α1, ..., αn (one per each sessions). Invoking
the verifier (as per Step V1), while feeding it with α1, ..., αn, we obtain its
n commitments, c1, ..., cn, for the n sessions.

Step S1: As explained in Section 3.2, we determine (for a random reference
run)21 the index j for which Ej holds, as well as the sets Tj and Tj−1. Recall
that this (and specifically procedure T (·, ·)) involves poly(n) · 2j rewindings
and re-simulations of Steps 2–3, while using commitments to dummy values.
Each rewinding is performed as in Step S2 below.
In case j = 0, we may skip all subsequent steps, and just output the reference
run produced in the current step.

Step S2: For each session i ∈ Tj, we wish to obtain the challenge (edge-
sequence) committed to in Step 1, while working within time poly(n) · 2j .
This is done by rewinding and re-simulating Steps 2–3 (i.e., Steps P1 and V2
of Construction 7) for poly(n)·2j times, while using commitments to dummy

20 Removing this assumption enables the situation that no event Ej occurs. This may
happen only if pi ≤ tn < 2−n, for every i∈I . But the probability that the reference
run corresponds to such a set I is at most

∑
i:pi<2−n pi < n ·2−n, and we may ignore

this rare event. Alternatively, we may modify the verifier such that pi > 2−n holds
for all i, by making it properly decommit to all sessions with probability 2−n+1,
and note that the execution of the modified verifier is indistinguishable from the
execution of the original verifier.

21 Here and in the sequel, when referring to runs and steps of the protocol, we actually
means steps in the parallel execution of the protocol.



56 Oded Goldreich

values. (Actually, we may as well do the same for all i’s (regardless whether
i ∈ Tj or not), but we are guaranteed to succeed only for i’s in Tj . Further-
more, we may work on all i’s at the same time.)
Specifically, each rewinding attempt proceeds as follows:
1. Generate n sequences of random (prover) commitments to a dummy

value, say 0. That is, for every (session) i = 1, ..., n, select uniformly
ri
1,1, ..., r

i
n,t ∈ {0, 1}n, and compute ci def= (ci

1,1, ..., c
i
n,t), where ci

k,� =
C(0, ri

k,�).
2. Feeding the verifier with (the n prover commitments) c1, ..., cn, obtain

the verifier’s n (Step 3) responses, denoted (s1, e1), ..., (sn, en).
3. For every properly decommitted session (i.e., i such that ci = Cαi(si, ei)),

store the corresponding challenge (i.e., the edge sequence ei).
(Note that it is unlikely that we will obtain two conflicting proper decom-
mitments to the same verifier commitment ci.)22

Step S3: For technical reasons, analogously to [17], we next obtain a good ap-
proximation of qj = Pr[Ej ]. This approximation, denoted q̃j , will be obtained
within expected time poly(n)/q̃j by repeated rewinding and re-simulating
Steps 2–3 (i.e., Steps P1 and V2 of Construction 7). Specifically, we repeat
the following steps until we obtain n5 runs in which event Ej holds.
1. Perform Items 1 and 2 as in Step S2. Let I ′ denote the set of sessions in

which the verifier has properly decommitted.
2. If I ′ fits event Ej (i.e., I ′ ⊆ Tj and I ′ �⊆ Tj−1) then increment the

“success counter” by one unit. (We proceed to the next iteration only if
the “success counter” is still smaller than n5.)

Suppose we have obtained n5 successes while making τ trials. Then we set
q̃j = n5/τ .

Step S4: We now try to generate a simulation of Steps 2–3 of the protocol (i.e.,
Steps P1 and V2 of Construction 7) in which event Ej occurs. However,
unlike in previous simulations, here we use (in Step 2) prover-commitments
to values that pass the challenges that we have obtained. This will allow us
to simulate also Step 4, and complete the entire simulation. Specifically, we
make at most poly(n)/q̃j trials to rewind and re-simulate Steps 2–3, while
using (in Step 2 of each session in Tj) commitments to values that pass
the corresponding challenge (which we obtained in Step S2). Each attempt
proceeds as follows:
1. Generate n sequences of random commitments to passing values (for

sessions in Tj, and dummy values otherwise). Specifically, suppose that
i ∈ Tj (or more generally that we have obtained (in Step S2) a proper
decommitment to ci), and denote by ((ui

1, v
i
1), ..., (u

i
t, v

i
t)) the value of the

decommitted challenge (edge sequence ei). Then, for every � = 1, ..., t,
select uniformly ri

1,�, ..., r
i
n,� ∈ {0, 1}n and ai

� �= bi
� ∈ {1, 2, 3}, and com-

pute ci
ui

�
,�

= C(ai
�, r

i
ui

�
,�
), ci

vi
�
,�

= C(bi
�, r

i
vi

�
,�
), and ci

k,� = C(0, ri
k,�) for

22 Unlike most probabilitistic statements in this section, the current statement refers
to a probability space that contains also the possible (random) choice of α1, ..., αn.
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k /∈ {ui
�, v

i
�}. Let ci def= (ci

1,1, ..., c
i
n,t). For i /∈ Tj (or for i’s for which

we failed in Step S2), we produce ci def= (ci
1,1, ..., c

i
n,t) as in (Item 1 of)

Step S2.
2. Feeding the verifier with (the prover’s commitments) c1, ..., cn, obtain
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decommitment (as in Step 4 of the protocol). This complete a full sim-
ulation of such a session, whereas improperly committed sessions are
simulated by their transcript so far.
Specifically, ignoring the rare case of conflicting proper decommitments,
a proper decommitment to session i ∈ I ′ ⊆ Tj must use the same chal-
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In the rare case in which a conflicting proper decommitment is received, we
proceed just as in case event Ej does not occur. If all poly(n)/q̃j trials fail
then we output a special failure symbol.

For technical reasons, we modify the above simulation procedure by never al-
lowing it to run more than 2n steps. (This is easily done by introducing an
appropriate step-count (which is implemented in linear or almost-linear time
and so does not affect our running-time analysis).)

3.4 A Detailed Analysis of the Simulator

Lemma 8 (Simulator’s running-time): The simulator runs in expected polyno-
mial-time.

Proof: The key observation is that each repeated attempt to produce something
is repeated for a number of times that is inversely proportional to the probability
that we try this attempt at all. This reasoning is applied with respect to each of
the main steps (i.e., Steps S1, S2, S3 and S4). Specifically:

– For Step S1: Recall that event Ej occurs in the reference run (generated at

the onset of Step S1), with probability qj . Letting Q
def= Tj \ Tj−1, we have

qj ≤ |Q| ·maxi∈Q{pi} ≤ n · tj−1 < n · 2−(j−1). Also, with probability at least
1− 2−n, Step S1 correctly determines j. Pending on the latter (overwhelm-
ingly high probability) event, the expected number of steps conducted in
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Step S1 is

n∑
j=0

qj · (poly(n) · 2j) <

n∑
j=0

(n · 2−(j−1)) · (poly(n) · 2j) = poly(n) (3)

Relaying on the fact that the simulator never runs for more than 2n steps,
we cover also the highly unlikely case (in which Step S1 determines a wrong
j).
The same reasoning applies to Step S2. That is, again assuming that Step S1
correctly determines j, the expected number of steps made in Step S2 is as
in Eq. (3).

– For Step S3: Assuming that q̃j = Θ(qj), the expected number of steps made
in Step S3 is

∑n
j=0 qj · (poly(n)/q̃j) = poly(n). The above assumption holds

with probability at least 1− 2−n, and otherwise we rely on the fact that the
simulator never runs for more than 2n steps. The same reasoning applies to
Step S4.

Thus, the overall expected running-time is polynomial (and this is proven with-
out relying on any security properties of the commitment schemes).

Lemma 9 (Simulator’s output distribution): Assume that the verifier’s commit-
ment scheme (i.e., C) is computationally-binding and that the prover’s commit-
ment scheme (i.e., C) is computationally-hiding. Then the output of the simulator
is computationally indistinguishable from the real parallel interaction.

Recall that the assumption that C is perfectly-hiding and C is perfectly-binding
is used in establishing (cf. [17, Sec. 4]) the soundness of the GK-protocol (as a
proof system).

Proof: For sake of clarity of the analysis, one may consider an imaginary sim-
ulator that goes on to determine all tj ’s (rather than determining only part of
them as in Item 2 of Step S1). We may assume that all approximations made
by the simulator are sufficiently good; that is, in Step S1 the simulator correctly
determines j as well as Tj and Tj−1, and in Step S3 it obtains q̃j = Θ(qj).
(Indeed, the assumption holds with probability at least 1− 2−n.)
Next, we consider three unlikely events in the simulation:

1. In Step S2, the simulator fails to obtain a proper decommitment of some i ∈
Tj . This may happen only with exponentially vanishing probability, because
we keep trying for poly(n) · 2j times and each time a proper decommitment
(for i) occurs with probability pi > tj ≥ 2−(j+1).

2. In Step S4, the simulator fails to generate a simulation in which event Ej

holds. We will show that this failure may happen only with negligible prob-
ability. Note that in order for this failure to occur, it must be that event
Ej occurs in Step S1 but does not occur in the poly(n)/q̃j = O(poly(n)/qj)
trials conducted in Step S4, although event Ej may occur in each such trial
with probability q′j that is negligibly close to qj . (Recall that qj refers to the
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probability that event Ej occurs for a “dummy” commitment, whereas q′j
refers to its probability for a “passing” commitment, and |qj−q′j | is negligible
because C is computationally-hiding (cf. [17, Clm. 3]).) Thus, the probability
of this failure is upper-bounded by

n∑
j=0

qj · (1 − q′j)
poly(n)/qj (4)

Letting Δj
def= |qj − q′j |, we consider two cases (cf. [17, Clm. 2]): in case

Δj ≤ qj/2, the corresponding term is exponentially vanishing (because
q′j ≥ qj/2 and (1 − (qj/2))2n/qj < exp(−n)), whereas in case Δj ≥ qj/2
we simply bound the corresponding term by qj ≤ 2Δj . Thus, in both cases,
we obtain that each term in Eq. (4) is negligible (because it is upper-bounded
by max(2Δj, exp(−n))). Noting that Eq. (4) refers to the sum of n + 1 such
terms, the claim follows.

3. In Step S4, the simulator obtains a proper decommitment to some session
such that the decommitted value is different from the one obtained for the
same session in Step S2. (In such a case, the simulator may end-up outputting
a failure symbol.) However, the hypothesis that C is computationally-binding
implies that this bad event occurs only with negligible probability.

We conclude that, except with negligible probability, the simulator produces an
output that looks syntactically fine. Needless to say, this is not enough: we need
to prove that the simulator’s output distribution, denoted Sn, is computationally
indistinguishable from a random transcript of the real interaction, denoted Rn.
The argument is analogous to the proof of [17, Clm. 4], but we present it a little
differently based on an idea of Vadhan [31].

Intuitively, the computational indistinguishability of Sn and Rn should follow
from the hypothesis that the commitment scheme C is computationally-hiding.
The question is how exactly to transform a distinguisher of Sn and Rn into an
algorithm that violates the hiding property of C. The presentation in [17, Clm. 4]
takes the standard approach (which can be traced to [19]) of breaking the analysis
into two cases that refer to some relevant events (such as our Ej ’s): in the first
case one of these events occurs with significantly different probabilities in Sn and
Rn, and in the second case each of these events occurs with essentially the same
probability in Sn and Rn. The first case is easy to handle (i.e., in this case one
can easily derive an algorithm that violates the hiding property of C), but the
second case involves more work. Specifically, in the second case, one considers the
conditional distributions of Sn and Rn subject to such an event (e.g., Ej) that
occurs with noticeable probability, and uses the simulator to derive an algorithm
that violates the hiding property of C. The latter derivation uses implicitly a
hybrid simulator, which we shall discuss next. Vadhan [31, Sec. 2.2.3] suggests
to explicitly introduce and analyze such a hybrid simulator.

The hybrid simulator is a mental experiment. It is given a 3-coloring of the
input graph, and thus has no problem to emulate the real prover in a straightfor-
ward manner. However, the hybrid simulator acts as the real simulator, except
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that (in all steps) it uses commitments to (random relabelings of) the 3-coloring
instead of commitments to dummy or to passing values (as used by the real sim-
ulator (in Steps S1-S3 and S4, respectively)). For the sake of clarity, we postulate
that in case of conflicting verifier decommitments (as in the foregoing Item 3)
the hybrid simulator also outputs a failure sybmol. We claim that the output of
the hybrid simulator, denoted Hn, is indistinguishable from both Sn and Rn.

Hn versus Rn: Consider a modification of the hybrid simulator in which Step S2
and S4 are repeated indefinitely until they are successful (rather than being
repeated poly(n) · 2j and poly(n)/q̃j times, respectively). Then the output
distribution of this modified hybrid simulator, denoted H ′

n, is statistically
close to Rn, where the statistical difference is due to conflicting verifier de-
commitments (as in Item 3). Specifically, event Ej occurs in Step S1 with
exactly the same probability as in a real interaction, and (conditioned on
not failing due to conflicting verifier decommitments) the conditional distri-
bution in Step S4 is identical to the corresponding distribution in Rn. By
the foregoing Items 1 and 2, the output of the hybrid simulator (i.e., Hn) is
statistically close to the output of the modified hybrid simulator (i.e., H ′

n),
and thus Hn is statistically close to Rn.

Hn versus Sn: Recall that the hybrid simulator differs from the real simulator
only in the prover commitments that it utilizes. Thus, intuitively, if Hn

and Sn are computationally distinguishable then we can distinguish com-
mitments with respect to the commitment scheme C. Indeed, combining the
simulator with the said distinguisher, we obtain an algorithm that runs in ex-
pected polynomial-time and distinguishes commitments to 3-coloring of the
graph from commitments to dummy and/or passing values. By truncating ex-
cessively long runs of the latter algorithm, we obtain a distinguisher that runs
in strict probabilistic polynomial-time and maintains a non-negligible distin-
guishing gap. This distinguisher needs to get the said 3-coloring as auxiliary
input, yielding a (non-uniform) family of polynomial-size distingiushing cir-
cuits, in violation of the computationally hidding property (as discussed in
§1.4).

The lemma follows.

Parenthetical Comment: Indeed, we wish to seize the opportunity and call the
reader’s attention to the elegant presentation technique suggested by Vadhan
in [31, Sec. 2.2.3].

Combining Lemmas 8 and 9, we obtain

Theorem 10 The (constant-round) GK-protocol is zero-knowledge under par-
allel composition.

Recall that the GK-protocol is a proof system for NP (with exponentially van-
ishing soundness error) [17]. Thus, assuming the existence of claw-free pairs of
functions, we have established the existence of constant-round proof systems for
NP that is zero-knowledge under parallel composition.
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Parenthetical Comment: Note that the foregoing simulator and its analysis hold
also if we set t = 1 in Construction 7. But under this setting of parameters,
Construction 7 only constitutes a weak type of interactive proof that rejects
false assertions (only) with noticeable probability. Still, executing this protocol
in parallel, for an adequate polynomial number of times, yields an alternative
constant-round zero-knowledge proof system for NP . Needless to say, the proof
of the latter assertion is more complex than the analysis of the GK-protocol in
the stand-alone setting (and in fact builds upon it).

3.5 An Extension

We relax the parallel execution condition to concurrent execution of polynomi-
ally-many sessions (of the GK-protocol) that satisfy the following two conditions:

C1: No session enters Step 2 before all sessions complete Step 1.
C2: No session enters Step 4 before all sessions complete Step 3.

In other words, the concurrent execution proceeds in three phases:

Phase 1: All sessions perform Step 1 (in arbitrary order).
Phase 2: All sessions perform Steps 2 and 3 (in arbitrary order except for the

obvious local timing condition (i.e., each session performs Step 3 after it has
completed Step 2)).

Phase 3: All sessions perform Step 4 (in arbitrary order).

Our treatment of parallel executions extends to the above (concurrent) case. The
reason being that the simulator treats Steps 2–3 as one unit, and so the fact that
these steps may be interleaving among sessions is of no importance. Specifically,
Step S0 of the extended simulator refers to Phase 1 (rather than to Step 1 of
the protocol), its Steps S1–S3 refer to Phase 2 (rather than to Steps 2–3), and
its Step S4 refers to Phases 2–3 (rather than to Steps 2–4).

4 Simulator for the Case of Bounded-Simultaneity

Recall that the GK-protocol proceeds in four (abstract) steps:

1. The verifier commits to a challenge (i.e., Steps (P0) and (V1) in the protocol).
2. The prover commits to a sequence of values (i.e., Step (P1) in the protocol).
3. (Step (V2):) The verifier decommits (either properly or not).
4. (Step (P2):) Pending on the verifier’s proper decommitment, the prover de-

commits to the corresponding values.

Here we consider (say n) concurrent executions in which up-to w sessions of the
GK-protocol run simultaneously at any given time, where w may be any fixed
constant.
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4.1 Motivation

The case of w = 1 corresponds to sequential composition, and it is well-known
that any zero-knowledge protocol maintains its security in this case. So let us
turn (as a warm-up) to the case of w = 2. Trying to use the single-session
simulator of [17] in this case, we encounter the following problem: when we try
to deal with the simulation of one session (by using the single-session simulator),
the verifier may invoke another session. A natural thing to do is to apply the
single-session simulator also to the second session. The good news is that the
verifier cannot initiate yet another session (before it terminates either the first or
second session, because this would violate the bounded-simultaneity condition
(for w = 2)). Instead, eventually (actually, in a few steps), one of two things will
happen (first):

1. The verifier may execute Step 3 in the second session, in which case we make
progress on treating the second session (towards completing a simulation of
it, which would put us back in the one-session case).

2. Alternatively, the verifier may execute Step 3 in the first session, in which
case we make progress on treating the first session. For example, if we were
trying to get the decommitment value for the first session and we just got it,
then we may abandon the treatment of the second session and proceed by
rewinding the first session. (Note that in this case we lost all work done in
the current simulation of the second session.) Similarly, if we were trying to
simulate the full run of the first session then we just obtained one additional
trial at a proper decommitment for Step 3 (which eventually will allow us
to complete the simulation of the first session).

Thus, in each of these cases, we make progress. Intuitively, the cost of dealing
with two simultaneous sessions is that we may have to invoke the single-session
simulator (for the second session) per each operation of the single-session simu-
lator (for the first session). As will be shown below, the above intuition remains
valid also when we handle polynomially-many sessions such that at most two are
running simultaneously. Furthermore, it extends also to the case that at most
w sessions are running simultaneously, where w is any fixed constant. In that
case, at most w sessions of the single-session simulator will be active at any
point during the simulation. Specifically, each operation in the emulation of the
i-th session will require invoking the single-session simulator (for simulating the
i + 1st session). Thus, the time-complexity of the simulation will be exponential
in w, where the base of the exponent is the time-complexity of the case where
w = 1.

4.2 The Actual Simulation

We start with a high level description of the simulation, next provide detailed
specification and implementation of the procedures used by the simulator, and
finally analyze them. Throughout the rest of the description we fix a (determin-
istic) adversarial verifier (and use black-box access to it).
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A High Level Description. In correspondence to the three main steps of the
single-session simulator (cf. Section 2.3), we introduce three recursive procedures:
Scan, Approx and Generate. Each of these procedures tries to handle a single
session (just as done by the corresponding step of the single-session simulator),
while making recursive calls when encountering a Step 2 message of some other
session.23 The recursive call will take place before executing this Step 2, and the
execution of this Step 2 will be the first thing that the invoked procedure will
do. The procedure terminates either upon completion of the task for which it
was invoked (i.e., scanning or generating the transcript of the current session) or
before doing so (e.g., reaching a problematic situation or completing the task for
which a “ancesstor” recursive call was invoked). Note that encoutering Step 2
of some other session will cause any of these procedures to make a recursive
call, whereas other steps of other sessions may be handled by these procedures
themselves.

Here and throughout the description, when we say that a procedure encoun-
ters some step, we mean that this step is scheduled by the adversary (based on
the simulation transcript). Formally, Steps 1 and 3 are determined by feeding the
adversary with the current simulation transcript, and using its response (which
is always either a Step 1 or a Step 3 action of some session). The corresponsing
Steps 2 and 4 (which are prover actions) always follow immediately, but our
description does not use this fact.

Before proceeding, let us recall the main steps of the single-session simulator,
and slightly modify them to provide a more convenient basis for our generaliza-
tion. In particular, in this modification, Step 1 (of the protocol) is simulated
separately (rather than as part of the Scan Step), and the Generation Step is
used also in case the Scan encountered an improper decommitment. The result-
ing simulation steps are as follows:

A straightforward simulation of Step 1: The simulator emulates Step 1 of
the protocol by obtaining the verifier’s commitment (of Step (V1), after
emulating Step (P0) in a straightforward manner).

The Scan Step: The simulator emulates Steps 2–3 of the protocol by using com-
mitments to dummy values in Step 2, and obtains the verifier’s decommit-
ment for Step 3, which may be either proper or improper. We call this
proper/improper bit the type of the decommitment. The simulator records
the type of the decommitment as well as the decommitment information in
case of proper decommitment.

The Approximation Step: The simulator approximates the probability that a sin-
gle scan (as performs in the Scan Step) ends with a decommitment of the
recorded type. (This is done by repeated trials, each as in the Scan Step,
until some polynomial number of decommitments of the recorded type is
encountered.)

23 This is no typo; we do mean Step 2, not Step 1. But indeed, being a prover step,
Step 2 of a session is encountered immediately after the execution of the correspond-
ing Step 1, which in turn is scheduled by the adversary.
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The Generation Step: Using the decommitment information obtained in the Scan
Step, the simulator repeatedly tries to generate a full transcript of the same
type as encountered in the Scan Step. It does so by emulating Steps 2–4,
using commitments to “pseudo-colorings” that do not “violate the coloring
conditions imposed by the decommitted edges” (in case the Scan Step ended
with a proper decommitment, and using commitments to dummy values
otherwise). The number of trials is inversely proportional to the probability
estimated in the approximation step, and if all fail then the simulator outputs
a special failure symbol.

Analogously, the recursive procedures Scan, Approx and Generate, operate as
follows, where the straightforward simulation of Step 1 (of each session) is per-
formed “en route” (by one of these procedures, while handling a different ses-
sion):

The Scan procedure is invoked to emulate Steps 2–3 of a certain session that is
scheduled to perform Step 2 at the current point (i.e., just following the cur-
rent “simulation transcript”), provided that the current “simulation record”
contains no trace of a prior handling of Step 2 of this session. The procedure
first emulates Step 2 of the said session by using commitments to dummy
values, and the hope is that it will reach Step 3 of the current session and
obtain the verifier’s decommitment for this session, which may be either
proper or improper. When this happens, the procedure returns the relevant
information (i.e., the decommitment value in case of proper decommitment
and a special symbol in case of improper decommitment). However, other
things may happen (due to the other sessions, scheduled for action by the
adversary):
– The procedure may encounter Step 1 of some other session, in which case

it emulates it in a straightforward manner (which results in augmenting
the simulation transcript). Next, the procedure continues handling the
current session.

– The procedure may encounter Step 2 of some other session, in which
case it invokes either Generate or Scan to handle this other session,
depending on whether or not our current simulation record contains a
trace of a prior handling of Step 2 of that session. We stress that the
invoked procedure may return an answer that refers to a session that is
not the one for which the procedure was invoked (i.e., the session to which
the currently encountered Step 2 belongs). Following is a description of
what the procedure does with the answer provided to it by the procedure
it invokes, which indeed depends on which procedure was invoked.
• When encountering a Step 2 of another session (denoted j) that was

not handled before, we invoke Scan, and handle the answer (of Scan)
according to whether or not it refers to session j. In the case that
the answer relates to session k �= j (which includes the case that k
equals the current session) we return the relevant information (as
when we encounter Step 3 of the current session), otherwise (i.e.,
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k = j) we record the information and continue (as when handling
other steps of other sessions). In the latter case, we will next execute
the following sub-case (which refers to the very same Step 2 (i.e.,
of session j)). We stress that, regardless of the answer of Scan, we
do not extend the simulation transcript in the current sub-case (and
thus, for k = j, an execution of the following sub-case referring to
session j will necessarily follow the execution of the current sub-case).

• When encountering a Step 2 of another session that was already han-
dled before, we repeatedly invoke Generate, until it either succeeds
or an adequate number of trials was performed, and handle the an-
swer (of Generate) as follows. If the answer provides an extension of
the simulation transcript, we continue handling the current session
using that transcript. Otherwise (e.g., the answer is a decommitment
information of yet some other session) then we terminate returning
this very answer.

(Indeed, Generate corresponds to a single trial of the Generation Step,
and the repeated attempts are done by the procedure that invokes it.)

– The procedure may encounter Step 3 of some other session, which may
happen when Step 2 of that session was handled by an invocation that
preceded the current one in the recursion path. Again, the action depends
on whether or not our current simulation record contains information
regarding a prior handling of Step 3 of that session.
• If no such prior handling exists (for this session) then the procedure

returns the corresponding decommitment information (although it
is not the session for which the current execution was invoked).

• If such prior handling exists and the current emulation of Step 3 fits
its type then the procedure augments the simulation transcript and
continues handling the current session. If the type does not fit then
the procedure returns a special failure symbol.

– The procedure may encounter Step 4 of some other session, which may
happen when Step 2 of that session was handled by an invocation that
preceded the current one in the recursion path. Furthermore, in that
case the recorded information allows to emulate this step in a straight-
forward manner, and Scan continues handling the current session (after
augmenting the simulation transcript).

Indeed, two key notions referred to above are the simulation transcript and
the simulation record. The former is a prefix of a full transcript (of an exe-
cution) being generated by the simulator, and the latter provides auxiliary
information regarding that (partial) transcript. In particular, the record con-
tains information regarding sessions that appear in the transcript, where this
information was obtained in previous invocations of various procedures on
prefixes of this transcript. For example, a successful Scan returns information
regarding the decommitment of a certain session.

The Approx procedure is invoked to approximate the probability that a certain
invocation of Scan returns a certain value (i.e., the identity of the decommit-
ting session and the type (i.e., proper or improper) of that decommitment).
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This is done by repeated trials, where in each trial the procedure behaves
similarly to Scan, until a sufficient number of trials return the value of in-
terest.

The Generate procedure is invoked to emulate Steps 2–4 of a certain session
that is scheduled to perform Step 2 at the current point, provided that the
current “simulation record” contains information regarding a prior handling
of Step 2 of this session (i.e., by Scan). The procedure behaves like Scan
except that it emulates Step 2 using commitments to passing values (i.e.,
values that would pass w.r.t the corresponding proper decommitment, or
arbitrary values in case the corresponding decommitment is improper). The
hope is that the procedure will reach Step 4 of the current session, and
that the verifier’s behavior at the corresponding Step 3 fits the recorded
information. When this happens, the procedure emulates these steps in a
straightforward manner (relying on the fact that a proper decommitment
yields a challenge that can be met by the “passing values” used in emulating
Step 2). Once the emulation of Step 4 is completed, the procedure returns
the corresponding simulation transcript. However, as in case of Scan, other
things may happen:
– The procedure may encounter steps of other sessions. These are handled

as in Scan.
– In addition, it may happen that Step 3 of the current session decommits

differently than in the simulation record (i.e., differently with respect to
the proper/improper bit). In this case, the procedure returns a special
failure symbol.

As mentioned above, the three procedures maintain (and pass along) the state of
the currently handled sessions as well as related auxiliary information. In partic-
ular, h will denote a partial transcript of the (concurrent) execution, and a will
denote a corresponding list of currently active sessions together with auxiliary
information regarding each of them (e.g., decommitment information obtained
in previous related runs). For sake of clarity, although the the identity of the
session that is responsible for the current procedure call (i.e., the session that
encountered Step 2) is implicit in h, we pass this identity explicitly. The (simu-
lator’s) main program merely consists of a special invocation of Generate with
empty history (i.e., h = a = λ).

The Specification of the Procedures. Let us first elaborate on the structure
of the auxiliary information a, which consists of records, each corresponding to
some encountered session of the protocol. The record corresponding to session i
consists of three fields:

1. The verifier decommitment field (of session i) indicates whether the first en-
counter of Step 3 (i.e., the verifier’s decommitment) of session i was proper
or improper (i.e., the type of decommitment), and in the former case the
field includes also the value of the decommitment. That is, if non-empty,
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the field stores a pair (X, v), where X ∈ {proper, improper} is a decom-
mitment type and v is a decommitment value (which is meaningful only in
case X = proper). This field (of the record of the ith session) is filled-up
according to the answer returned by some invocation of Scan(h, ·, i).

2. The decommitment probability field (of session i) holds an approximation of
the probability that an invocation (with parameters as the one that filled-
up the first field) actually turns out returning same type. That is, suppose
that the first field of record i (i.e., the record of the ith session) was filled-
up according to the answer returned by Scan(h, a, i), which resulted with a
decommitment of type X ∈ {proper, improper}. Then the second field of
record i should hold an approximation of the probability that Scan(h, a, i)
returns with an answer that encodes the same type of decommitment of
session i. (Jumping ahead, we hint that Scan(h, a, i) may return with a
decommitment to some other session (or with failure), and so the sum of the
two probabilities corresponding to the two types is not necessarily 1.)

3. The prover decommitment field (of session i) encodes the decommitment in-
formation corresponding to the prover’s commitment in Step 2. This field
(of the record of the ith session) is filled-up at the up-front of the execution
of Generate(h, a′, i), which follows the invocation of Scan(h, a, i), where a′

is a augmented by the verifier decommitment information of session i and
the prover’s commitment is performed so to passed the latter.

As hinted above, the fields are filled-up in the order they appear above (i.e., the
verifier decommitment field is filled-up first). In reading the following specifica-
tions, it may be instructive to consider the special case of a single session (in
which case failure never occurs and j = i always holds).

Specification of Scan(h, a, i): This call produces a prefix of a “pseudorandom”
execution transcript that extends the prefix h, and returns some related infor-
mation. The transcript is pseudorandom in the sense that it is computationally
indistinguishable from a (prefix of a random) real continuation of h (by the ad-
versary interacting with sessions of the prover).24 The extended transcript is
truncated (i.e., the extended prefix ends) at the first point where one of the
following holds:

1. Progress: This is a case where the (extended) execution reaches Step 3 of
some session j (possibly but not necessarily j = i) such that the first field
of record j is empty. In this case, the procedure should return the index j as
well as the decommitment information (provided in the current execution of
Step 3 of session j). That is, the answer is a pair (j, y), where j is an index of
a session and y is a decommitment information (which may be either proper
or improper).

24 The reader may wonder as to what will happen in case h itself is not consistent
with any prefix of such a real interaction. The answer is that the extended execution
will always be truncated before this fact becomes evident (i.e., we never perform
Step 4 of a session unless Step 2 of that session was performed using commitments
to passing values).
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2. Failure: This is a case where the (extended) execution reaches Step 3 of some
session j �= i such that the first field of record j encodes a decommitment
type different than the one occuring in the current extension. That is, the
first field of record j encodes decommitment type X ∈ {proper, improper},
whereas in the current execution Step 3 of session j has a decommitment
type different from X (i.e., opposite to X). In this case, the procedure cannot
continue (and should return a special failure symbol).
(In contrast, in case the execution reaches Step 3 of some session j �= i such
that the first field of record j encodes a decommitment type that equals the
one occuring in the current execution, the procedure may continue handling
session i.)

Furthermore, Scan should make progress with overwhelmingly high probability
(equivalently, should fail only with negligible probability).

Specification of Approx(h, a, X, i): Always returns an approximation of the prob-
ability that Scan(h, a, i) answers with a pair (i, y) such that y has type X ∈
{proper, improper}. The approximation is required to be correct to within a
factor of 2, with probability at least 1− 2−n.

Specification of Generate(h, a, i): This call produces a prefix of a pseudorandom
execution transcript that extends the prefix h, and returns either this extension
or related information. The notion of pseudorandom is the same as in case of
Scan, and the extended transcript is truncated at the first point where one of
the following holds:

1. Failure: Exactly as in the specification of Scan, except that here j = i is
possible too.

2. Progress: Here there are two sub-cases:
(a) This is a case where the (extended) execution reaches Step 3 of some

session j such that the first field of record j is empty. This sub-case is
handled exactly as the Progress Case of Scan. (Unlike in Scan, here j = i
cannot not possibly hold.)

(b) This is a case where the (extended) execution reaches Step 4 of session i.
In this case, the procedure returns the currently extended transcript (in-
cluding the execution of Step 4 of session i), along with a corresponding
update to the auxiliary information a.

Furthermore, Generate should make progress with probability that is at most
negligibly smaller than the probability approximated by the corresponding
Approx-call. Thus, unlike in the presentation of the single-session simulator,
here Generate does not make progress almost always (not even in the case of a
single session), but rather makes progress with probability that is close to the
one approximated by the corresponding Approx-call. That is, Generate is ac-
tually a generation-attempt, and the repetition of this attempt is made by the
higher level invocation (rather than in the procedure itself).
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The Implementation of the Procedures. We refer to the notion of a pass-
ing commitment as defined and used in Section 3. Recall that a passing com-
mitment is a sequence of (prover’s) commitments to values that pass for the
corresponding challenge (encoded in the first field of the corresponding session):
See Footnote 16.

We start with the description of Generate (although Generate(·, ·, i) is in-
voked after Scan(·, ·, i)). We note that Generate(h, a, i) is always invoked when
the first field in the ith record in a is not empty (but rather encodes some de-
commitment, of arbitrary proper/improper type), and the third field is empty
(and will be filled-up at the very beginning of the execution).

Procedure Generate(h, a, i): Initializes h
′

= h and a′ = a, generates a pass-
ing commitment for (Step 2 of) session i, and augments h

′
and a′ accordingly.

Specifically:

1. The procedure generates a random sequence of values, denoted v, that pass
the challenge described in the first field of the ith record of a. That is, v
may be arbitrary if the said field encodes an improper decommitment; but
in case of proper decommitment, v must pass with respect to the challenge
value encoded in that field.

2. The procedure generates a random sequence of (prover’s) commitments, de-
noted c, to v, augments h

′
by c, and augments a′ by placing the corresponding

decommitment information in the third field of the ith record.

Next, the procedure proceeds in iterations according to the following cases that
refer to the next step taken in the concurrent execution (as determined by the
adversary).

Step 1 by some (new) session: Just augment h
′

accordingly (and proceed
to the next iteration).

Step 2 by some session j (certainly j �= i): We consider two cases depending
on whether or not a′ contains the verifier’s decommitment information for
session j (i.e., whether or not the first field of the jth record is non-empty).
1. In case a′ does contain such information, we generate a corresponding

passing commitment (i.e., a prover commitment to values that pass w.r.t
challenge encoded in the first field of the jth record), augment h

′
and a′

accordingly, and proceed to the next iteration. (Specifically, analogously
to the up-front activity for (Step 2 of) the ith session, the third field
in the jth record of a′ is augmented by the decommitment information
corresponding to this prover commitment, and h

′
is augmented by the

commitment itself.)
2. The case in which a′ does not contain such information (i.e., the first field

of the jth record is empty (and certainly j �= i)), is the most involved
part of the procedure. In this case, we proceed as follows:
(a) We invoke Scan(h

′
, a′, j), and consider its answer, which is either

failure or a progress pair (k, y). In case of progress, we determine
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the type X ∈ {proper, improper} of the decommitment information
y (with respect to the corresponding Step 1 commitment in h

′
).

(b) If the answer is either failure or is a progress pair (k, y) with k �= j
then we return with the very same answer (i.e., either failure or
(k, y)).
(Here, in case of progress, k �= i must hold.)

(c) We reach this step only if the answer obtained from Scan is a progress
pair (k, y) with k = j. Letting X be the type of y, we let q̃ ←
Approx(h

′
, a′, X, j), and update the jth record of a′ placing (X, y) in

the first field and q̃ in the second field. (Actually, it suffices to place
(X, v) in the first field, where v is the decommitment value included
in the decommitment information y.)
(We comment that in case X = improper, we could have skipped
all subsequent sub-steps, and used instead the extended transcript
generated by the above invocation of Scan, provided that Scan were
modified to return this information as well. However, avoiding this
natural modification makes the extension in Section 5 more smooth.)

(d) Next, we repeatedly invoke Generate(h
′
, a′, j) until getting a progress,

but not more than poly(n)/q̃ times. (We will show that only with neg-
ligible probability can it happen that all calls return failure.) If all
attempts have returned failure then we return failure, otherwise
we act according to the following sub-cases of the progress answer
(of Generate(h

′
, a′, j) as specified in §4.2), where the progress may

be either a decommitment pair or an extended transcript:
i. If the progress answer (of Generate(h

′
, a′, j)) provides a pair

(k′, y′) (where certainly k′ �= j as well as k′ �= i), then (anal-
ogously to sub-step 2b) we return with the very same answer
(k′, y′).

ii. If the progress answer (of Generate(h
′
, a′, j)) provides an up-

dated history h
′′

(together with updated auxiliary information
a′′) then update h

′
and a′ (i.e., h

′ ← h
′′

and a′ ← a′′), and pro-
ceed to the next iteration. (Note that in this case h

′′
ends with

execution of Step 4 of session j.)
Note that in handling this case, we provide a full handling of session j,
invoking all three procedures. Indeed, this handling is analogous to the
single-session simulator.

Step 3 by session i: Just as the first sub-case in the next case (i.e., Step 3 by
some session j �= i with a non-empty first field).

Step 3 by some session j �= i: We consider two cases depending on whether
or not a′ contains the verifier’s decommitment information for session j (i.e.,
the first field of the jth session is not empty).
1. In case a′ does contain such information, we consider sub-cases according

to the relation of the contents of the the first field of the jth session,
denoted (X, ·), and the current answer of the verifier.
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(a) If the decommitment type of the current Step 3 (of the jth session)
fits X then we just augment h

′
accordingly (and proceed to the next

iteration).
(b) Otherwise (i.e., the decommitment type of the current Step 3 does

not fit X), return failure.
2. In case a′ does not contain such information (i.e., the first field of the jth

session is empty), obtain the relevant decommitment information from
the adversary (it may be either an improper or proper decommitment),
and return (as progress) with this information only. That is, return
with (j, y), where y encodes the decommitment information just obtained
from the adversary.

Step 4 by some session j (possibly j = i): We will show that, except with
negligible probability, this step is reached only in case the corresponding
(Step 2) prover commitment is passing and a′ contains the corresponding
decommitment (in the third field of the jth record). Using the latter prover’s
decommitment information, we emulate Step 4 in the straightforward man-
ner (and augment h

′
accordingly). In case j = i, return with the current h

′

and a′ (otherwise proceed to the next iteration).

Note that Step 2 of session i is handled up-front. In case of a single session i, the
above procedure degenerates to the basic handling of Steps 2–4 of session i. In
the fictitious invocation of Generate by the main program (i.e., with empty h
and a fictitious i), only the handlings of Steps 2–4 for sessions j �= i are activated
(whereas, in handling Step 2, sub-steps 2b and 2(d)i are never activated). We
now turn to procedure Scan, which is similar to Generate, except for its handling
of the steps of session i.

Procedure Scan(h, a, i): Initializes h
′
= h and a′ = a, generates a dummy com-

mitment for (Step 2 of) session i, and augments h
′
accordingly. (Specifically, the

procedure generates a random sequence of commitments, c, to dummy values,
and augments h

′
by c.) Next, the procedure proceeds in iterations according to

the following cases that refer to the next step taken in the concurrent execution.

Step 1 by some (new) session: As in Generate.
Step 2 by some session j (certainly j �= i): As in Generate.

(We comment that unlike in sub-step 2b of Generate, here k = i is possible.)
Step 3 by session i: Obtain the relevant decommitment information from the

adversary (it may be either an improper or proper decommitment), and
return (as progress) with this information. That is, returnwith (i, y), where
y encodes the decommitment information just obtained from the adversary.

Step 3 by some session j �= i: As in Generate.
Step 4 by some session j �= i: As in Generate.

Note that we never reach Step 4 of session i (and that Step 2 of session i is
handled up-front).
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Procedure Approx(h, a, X, i): This procedure merely invokes Scan(h, a, i) until
it obtains m = poly(n) invocations that return a pair that is a decommitment
of type X for session i, and returns the fraction of m over the number of trials.
Specifically, the procedure proceeds as follows:

Set cnttotal = cntsucc = 0.
Until cntsucc = m do

increment cnttotal (unconditionally),
(j, y)← Scan(h, a, i),
increment cntsucc if and only if j = i and y is of type X .

Output: m/cnttotal.

Analysis of the Simulation. It is quite straightforward to show that the
procedure Approx satisfies its specification. Ignoring the exponentially vanishing
probability that any single approximation (by the procedure Approx) is off by
more than a factor of 2, we may bound the total expected running-time by using
the recursive structure of the simulation. (We start with bounding the running-
time, because we will have to use this bound in analyzing the output of the
simulator.)

Running-time analysis. Towards the running-time analysis, it is useful to pass
among the procedures also the corresponding path in the tree of recursive calls.
For example, instead of saying that Scan(h, a, i) invokes Generate(h

′
, a′, j), we

may say that Scan(h, a, i; p) invokes Generate(h
′
, a′, j; (p, i)), where p denotes

the path of recursive calls leading to the calling invocation (i.e., Scan(h, a, i; p)).
Bounded-simultaneity implies that the depth of the recursive tree is a constant
(i.e., equals the simultaneity bound w), because whenever a procedure is invoked
with path p it must be the case that the sessions with indices in p are still active
(i.e., the corresponding transcript does not contain their last message). The fact
that the depth of the recursive tree is a constant is the key to the analysis of the
running-time of the simulation.

Considering oracle calls to the adversary’s strategy as atomic steps, the
expected running-time of Scan(h, a, i; p) (resp., Generate(h, a, i; p)) is domi-
nated by the time spent by the recursive calls invoked by Scan(h, a, i; p) (resp.,
Generate(h, a, i; p)). Such calls are made only when handling Step 2 of a session
with no verifier decommitment information. Each of these handlings consists
of first invoking Scan(h

′
, a′, j; (p, i)), where h

′
is the current extension of the

transcript h, and, pending on its not returning failure, invoking Approx and
Generate on (h

′
, ·, j; (p, i)). (Specifically, the latter procedures are invoked only

if Scan(h
′
, a′, j; (p, i)) = (j, ·).) In particular, Approx(h

′
, a′, X, j; (p, i)) invokes

Scan(h
′
, a′, j; (p, i)) for an expected number of times that is inversely propor-

tional to the probability that Scan(h
′
, a′, j; (p, i)) answers with a type X decom-

mitment to session j, and Generate(h
′
, a′, j; (p, i)) is invoked for the at most

the same (absolute) number of times. That is, letting Scan′(h
′
, a′, j) def= (k, X) if

Scan(h
′
, a′, j) answers with a type X decommitment to session k, we conclude
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that the expected number of recursive calls made (directly) by Scan(h, a, i; p)
(resp., Generate(h, a, i; p)) when handling a Step 2 message of Session j is∑
X∈{proper,improper}

Pr[Scan′(h
′
, a′, j) = (j, X)] · poly(n)

Pr[Scan′(h
′
, a′, j) = (j, X)]

= poly(n)

(5)

The key point is that all these recursive calls (invoked by, say, Scan(h, a, i; p))
have the longer path (p, i). Furthermore, these calls refer to transcripts that
are prefixes of one another (i.e., each recursive call refers either to the same
transcript as the previous call or to an extension of it). Thus, each node in the
(depth w) tree of recursive-calls has an expected polynomial number of children,
and so the expected size of the tree is upper-bounded by poly(n)w. It follows
that, the simulation terminates in expected polynomial-time. That is:

Claim 11 For any polynomial-time adversary and any constant w that bounds
the number of simultaneously active sessions, the simulation terminates in ex-
pected polynomial-time.

Output distribution analysis. We start the analysis (of the output distribu-
tion) by justifying the discarding of the (remote) possibility that during the
(polynomial-time) simulation we ever get two conflicting proper decommitments
to the same verifier commitment. (In fact, the above functional description
suggests this assumption, although formally it is not needed in the functional
description.) The justification is that the polynomial bound on the expected
running-time implies that the computational-binding property of the verifier’s
commitment is violated during the simulation with negligible probability.

Next, we establish that the implementations of the various procedures satisfy
the corresponding specification, by using backward induction on the depth of
the recursive call. First, we establish that in sub-step 2d of the handling of
a Step 2 message, it rarely happens that all invocations of Generate return
failure (i.e., this bad event occurs with negligible probability). This is due to
the specification of the procedures invoked at the current stage (assumed in the
induction step or to the fact that no procedure is invoked in the base case of
the induction). (Specifically, Generate is invoked for a number of times that
is inversely proportional to the probability it succeeds.) This holds for a single
handling of a Step 2 message, and we infer the same for all handlings that take
place in the recursion tree by using a union bound and relying on the polynomial
bound on the expected number of handlings (implied by Claim 11). The analysis
of the other sub-steps in the handling of a Step 2 message is straightforward (from
the code and specification). The analysis of the handling of Step 3 messages is
similar, and the analysis of other handlings is straightforward. Thus, we obtain:

Claim 12 For any polynomial-time adversary and any constant w that bounds
the number of simultaneously active sessions, the invocation of any procedure
during the simulation behaves according to the corresponding specification.
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Recall that the specification allows for a negligible error probability and the
output of Generate is required to be indistinguishable from a corresponding
concurrent execution. Once Claim 12 is established, we look at the initial (ficti-
tious) invocation of Generate, which cannot possibly return with failure, and
conclude that the simulator’s output is computational indistinguishable from a
real interaction of the cheating verifier with sessions of the prover. Thus, we get

Theorem 13 The (constant-round) GK-protocol is zero-knowledge under con-
current composition of bounded-simultaneity.

5 Simulation Under the Timing Model

Recall that the timing assumptions refer to two constants, Δ and ρ, such that
Δ is an upper bound on the message handling-and-delivery time, and ρ ≥ 1 is
a bound on the relative rates of the local clocks. Specifically (cf. Footnote 6),
clock rates are measured with respect to time intervals of length Δ; that is, if
during a real-time period of Δ units the reading of some local clock changed by
Δ′ units, then Δ/ρ ≤ Δ′ ≤ ρΔ. For simplicity, we may assume without loss of
generality that Δ/ρ ≤ Δ′ ≤ Δ (i.e., that all clocks are at least as slow as the
real time).25

5.1 The Time-Augmented GK-protocol

Recall that the GK-protocol proceeds in four abstract steps, but the actual imple-
mentation of the first step consists of the prover sending a preliminary message
that is used as basis to the verifier’s actual commitment. Thus, the GK-protocol
is actually a 5-round protocol starting with a prover message. We augment this
protocol with the following time-driven instructions, where all times are mea-
sured according to the prover’s clock starting at the time of the invocation of
the prover’s program:

1. The prover time-outs Step 1 after Δ1
def= 2Δ units of time (as measured on

its clock).
(By the timing assumption, this does not disrupt honest operation, because
2Δ real units of time suffice for the delivery of a message from the prover to
the verifier and back.)

2. The prover delays its execution of Step 2 to time Δ2
def= ρ ·Δ1 + Δ. That is,

it sends its message exactly when its clock shows that Δ2 units of time have
elapsed.

3. The prover time-outs Step 3 after Δ3
def= Δ2 + 2Δ units of time.

(Note that Δ3 = (2ρ + 3) ·Δ.)
4. The prover delays its execution of Step 4 to time Δ4

def= ρ ·Δ3 + Δ.
25 We comment that although our formulation looks different than the one in [13], it

is in fact equivalent to it.
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We comment that, compared to Dwork et. al. [13], we are making a slightly more
extensive use of the time-out and delay mechanisms: Specifically, they only used
the last two items and did so while setting Δ3 = 4Δ and Δ4 = ρΔ3. On the other
hand, our use of the time-out and delay mechanisms is less extensive than the
one suggested by Section 1.5: We only guarantee that for two sessions that start
at the same time, Step 2 (resp., Step 4) in one session starts after Step 1 (resp.,
Step 3) is completed in the other session, but we do not guarantee anything about
the relative timing of Steps 2 and 3 (of different sessions). Relying on special
properties of the GK-protocol (as analyzed in Section 3.5), we can afford doing
so, whereas the description in Section 1.5 is generic and refers to any c-round
protocol. (However, in the typical case where ρ ≈ 1, the difference between the
various time-augmentations of the GK-protocol is quite small.)

Parenthetical Comment: A more general treatment can be derived by introduc-
ing an auxiliary parameter, denoted δ > 0, which (in the description above) we
have set to equal Δ. In the general treatment, Step 2 uses delay Δ2

def= ρ ·Δ1 +δ,
whereas Step 4 uses Δ4

def= ρ ·Δ3 + δ, where Δ1
def= 2Δ and Δ3

def= Δ2 + 2Δ (as
above). Doing so, in the decomposition, one may partition time to intervals of
length δ (rather than length Δ). For ρ = 1, the number of overlapping blocks
in the forthcoming Claim 14 changes by a factor of (3Δ + δ)/4δ > 1/4, whereas
the execution time of the protocol changes by a factor of (4Δ + 2δ)/6Δ > 2/3.
Observe that we do not gain much by setting δ �= Δ. Specifically, by setting
δ � Δ we may reduce the the execution time by not more than a factor of 2/3,
whereas the effect on the simulation time is devastating (because the latter de-
pends exponentially on the number of overlapping blocks, which in turn grows
by a factor of approximately 3Δ/4δ for δ � Δ). On the other hand, setting
δ � Δ does not make the simulation significantly faster, whereas it delays the
execution time considerably (i.e., by a factor of approximately δ/3Δ for δ � Δ).
Thus, we chose to set δ = Δ.

5.2 The Simulation

As mentioned in the introduction, the simulation relies on a decomposition of
any schedule that satisfies the timing model into sub-schedules such that each
sub-schedule resembles parallel composition, whereas the relations among the
sub-schedules resembles bounded-simultaneity concurrent composition. In fact,
we can prove something stronger:

Claim 14 Consider an arbitrary scheduling of concurrent sessions of the time-
augmented GK-protocol that satisfy the timing assumption. Place a session in
block i if it is invoked within the real-time interval ((i− 1) ·Δ, i ·Δ]. Then, for
every i:

1. Each session in block i terminates Step 1 by real-time i · Δ + ρΔ1, starts
Step 2 after real-time i ·Δ+ρΔ1, terminates Step 3 by real-time i ·Δ+ρΔ3,
and starts Step 4 after real-time i ·Δ + ρΔ3.
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2. The number of blocks that have a session that overlaps with some session in
block i is at most 16ρ3. That is, the number of j �= i such that there exists a
time t, a session s in block i, and a session s′ in block j such that s and s′

are both active at time t is at most 16ρ3.

The first item corresponds to Conditions C1 and C2 in Section 3.5, and the
second item corresponds to bounded-simultaneity.26

Proof: The latest and slowest possible session in block i is invoked by real-time
i·Δ, and takes ρΔ units of real-time to measure Δ local-time units. It follows that
such a session terminates Step 1 (resp., Step 3) by real-time i ·Δ + ρ ·Δ1 (resp.,
i ·Δ+ρ ·Δ3). On the other hand, the earliest and fastest possible session in block
i is invoked after real-time (i− 1) ·Δ, and takes Δ units of real-time to measure
Δ local-time units. It follows that such a session starts Step 2 (resp., Step 4)
after real-time (i−1) ·Δ+Δ2 = i ·Δ+ρΔ1 (resp., (i−1) ·Δ+Δ4 = i ·Δ+ρΔ3).
The first item follows.

For the second item, note that the earliest possible session in block i is invoked
after real-time (i−1) ·Δ, whereas the latest and slowest possible session in block
i terminates by real-time i ·Δ + ρΔ4 + Δ = (i + 1) ·Δ + ρ · (2ρ2 + 3ρ + 1) ·Δ.
Thus, all sessions of each block are active during a time interval of length (2ρ3 +
3ρ2 + ρ + 2) · Δ, and therefore these sessions may overlap sessions of at most
2 · (2ρ3 + 3ρ2 + ρ + 2) ≤ 16ρ3 other blocks.

Given Claim 14, we extend the simulation strategy of Section 4 by showing
how to handle blocks of “practically parallel” sessions rather than single sessions
(which may be viewed as “singleton blocks”). For simplicity, the reader may think
of the scheduling as being fixed such that the partition of sessions to blocks is
fixed. However, the treatment actually holds also for a dynamic schedule where
the membership of sessions in blocks is determined on-the-fly (i.e., upon their
execution of Step 1). To motivate the final construction, we consider first the
special case in which each block is a perfect parallel composition of some sessions.

Combining the Simulation Techniques – The Perfect Case. The key
to the extension is to realize that all that changes is the types of verifier de-
commitment events (corresponding to Step 3 messages). Recall that in case of
a single session, there were two possible events (i.e., proper and improper de-
commitment), and these were the two decommitment types we have considered.
Here, for m parallel sessions (of some block), we may have 2m possible events
corresponding to whether each of the m sessions is proper or improper. How-
ever, the decommitment types we consider here are (not these 2m events but
rather) the n+1 events considered in Section 3: the events E0, E1, ..., En, where
event Ej holds if all the properly decommitting sessions (in the current run)

26 The second item is actually stronger than bounded-simultaneity, because it upper-
bounds the total number of blocks that overlap with a given block (rather than
upper-bounding the number of blocks that are (simultaneously) active at any given
time).
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have proper-decommitment probability above the threshold tj ≈ 2−j but not
all these sessions have proper-decommitment probability above the threshold
tj−1 ≈ 2−(j−1). Indeed, E0 is the event that all sessions have improperly decom-
mitted in the current run. (It is important that the number of decommitment
types is bounded by a polynomial; this will be reflected when trying to extend
the analysis captured in Eq. (5).)

Given the new notion of decommitment types, the three procedures of Sec-
tion 4 (Scan, Approx and Generate) are extended by using the corresponding
operations in Section 3. We stress that, in case of progress, the extended Scan
(as well as the first progress case in the extended Generate) returns the decom-
mitment information, which includes the indication of whether each session has
properly decommitted, but not the decommitment type. The latter will be deter-
mined as in Section 3 (which is far more complex than the trivial case handled in
Section 4, where decommitment type equals the decommitment indicator bit).
The decommitment type (rather than the sequence of decommitment indicators)
is what matters in much of the rest of the activities of the modified procedures.

We focus on the most interesting modifications to the main procedures (Scan
and Generate), and ignore straightforward extensions (which apply also to other
steps):

1. The handling of Step 2 messages by a block j with a non-empty first infor-
mation field is analogous to the treatment in the original procedure, and
we merely wish to clarify what this means here. The point is that the first
field of block j encodes a decommitment type Ek as well as decommitment
information for all sessions that properly decommit with probability at least
tk ≈ 2−k. The prover commitment produced here is designed to pass with re-
spect to these decommitment values. (The same applies to the initial actions
in Generate.)

2. The handling of Step 2 messages by a block j with an empty first information
field (i.e., the only case that invokes recursive calls). The following sub-steps
correspond to the sub-steps in the original procedures (Scan and Generate):
(a) We invoke Scan with a block index j (rather than with a session index),

and consider its answer which is either failure or a progress pair (k, y),
where k is a block index, and y is a list of decommitments corresponding
to the various sessions of block k. We refer to the above invocation of
Scan as to the initial one, and note that many additional invocations
(with the same parameters) will take place in handling the current step.
If (the initial invocation of) Scan returned with a progress pair (k, y)
such that k = j, then we turn to the complex task of determining the
decommitment type E� (which holds with respect to y) as well as the
corresponding sets T� and T�−1. (If k �= j then the following activity
will not be conducted here, but rather be conducted by the instance
that invoked Scan(·, ·, k).) The decommitment type E� as well as the
corresponding sets T� and T�−1 are determined analogously to the main
part of Step S1 (of Section 3), which needs to be implemented in the
current context. In particular, the implementation of Step S1 calls for the
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approximation of the probabilities (denoted pi’s in Section 3) that each
of the sessions properly decommits. This, in turn, amounts to multiple
executions of Steps 2–3 of these sessions, which in our case should be
handled by multiple invocation of Scan(·, ·, j). Details follow.
Let I ⊆ [n] denote the set of sessions in which the verifier has properly
decommitted in y. (Recall we are in the case where the initial invocation
of Scan(h

′
, a′, j) has returned the progress pair (j, y).) Our objective is

to determine the corresponding event index � as well as the sets T� and
T�−1. We consider the following cases (w.r.t I):
Case of empty I: Set � = 0 and T� = T�−1 = ∅.
Case of non-empty I: Set t0 = 1 and T0 = ∅. We determine � ≥ 1 (as

well as T�), by iteratively considering � = 1, ..., n (as in Section 3.2).
That is, for � = 1, ..., n do
i. We obtain t� by invoking a procedure analogous to T (�, n) (of

Section 3.2).
Specifically, we approximate each of the ps’s by poly(n) ·2� invo-
cations of Scan(h

′
, a′, j). Recall that each call of Scan(h

′
, a′, j)

specifies whether each session in Block j has properly decom-
mitted, and approximations to the ps’s, denoted as’s, are de-
termined accordingly. We stress that ps is the probability that
Scan(h

′
, a′, j) returns a progress pair (j, y′) such that Session s

properly decommits in y′ (e.g., ps is upper-bounded by the prob-
ability that Scan(h

′
, a′, j) returns a progress pair (j, ·)). Once all

as’s are determined, we determine t� just as in the second step
of T (�, n).

ii. Determine the set T� by determining, for each s, whether or not
ps > t�. We use the above approximations to each ps and rely on
|ps − t�| > (1/9n)2−�.

iii. Decide if event E� holds for y by using T�−1 (of the previous
iteration) and T� (just computed). Recall that event E� holds for
y if I ⊆ T� but I �⊆ T�−1.

iv. If event E� holds then exit the loop with the current value of �
as well as with the values of T� and T�−1. Otherwise, proceed to
the next iteration (i.e., the next value of �).

In both cases (of I), we have determined the commitment type X = E�

with respect to y (as obtained in the initial invocation of Scan) as well
as the corresponding sets T� and T�−1.
(This corresponds to Step S1 of the simulator of Section 3.)

(b) Exactly as in the original sub-step 2b. (That is, if the initial answer is
either a failure or is a progress pair (k, y) with k �= j then return with
the very same answer.)

(c) Recall that we reach this sub-step only if the answer of the initial invoca-
tion of Scan is a progress pair (j, y), and that we have already determined
the event E� that holds (for y). By poly(n) · 2� additional invocations
of Scan (with the same parameters as above), we may obtain progress
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pairs of the form (j, ·) several times. In each of these cases, the second
component consists of a list of proper decommitment values. With over-
whelmingly high probability, for each s ∈ T�, we will obtain (from at
least one of these lists) a proper decommitment for Session s (because
ps > 2−�). Ignoring the question of what decommitment types hold in
these lists,27 we combine all these lists to a list v of all proper decom-
mitment values (obtained in any of these lists). This list v together with
T� and T�−1 (as obtained in sub-step 2a) forms a new information string
z = (v, T�, T�−1), which will be used below (i.e., recorded in a′ for future
use). (This corresponds to Step S2 of the simulator of Section 3.)
Next, analogously to the original sub-step 2c, we obtain an approxima-
tion to the probability that Scan(h

′
, a′, j) = (j, y) such that E� holds in

y. Specifically, we let q̃ ← Approx(h
′
, a′, (E�, T�, T�−1), j), where proce-

dure Approx uses T� and T�−1 in order to determine whether the event E�

holds in each of invocations of Scan(h
′
, a′, j). We update the jth record

of a′ by placing (E�, z) in the first field and q̃ in the second field. (This
corresponds to Step S3 of the simulator of Section 3.)

(d) Finally, analogously to the original sub-step 2d, we invoke Generate(h
′
,

a′, j) up-to poly(n)/q̃ times and deal with the outcomes as in the original
sub-step 2d. (This corresponds to Step S4 of the simulator of Section 3.)

3. The handling of Step 3 messages by a block j (possibly j = i) is analogous
to the treatment in the original procedure, and we merely wish to spell out
what this means: We consider two cases depending on whether or not a′

contains the verifier’s decommitment information for block j (i.e., the first
field of the jth block is not empty).
(a) In case a′ does contain such information, we consider sub-cases according

to the relation of the contents of the the first field of the jth block,
denoted (E�, z), and the current answer of the verifier. Specifically, we
check whether the verifier’s current answer is of type E�. We note that the
type of the current verifier decommitment is determined using the sets
T� and T�−1 provided in z (i.e., z = (v, T�, T�−1), where v is a sequence of
decommitment values not used here). The sub-cases (fit versus non-fit)
are handled as in the original procedure.

(b) In case a′ does not contain such information (i.e., the first field of the
jth block is empty), we obtain the relevant decommitment information
(i.e, a sequence of decommitments) from the adversary, and return (as
progress) with this information only.

This completes the description of the modification to the main procedures for
the current setting (of bounded-simultaneity of blocks of parallel sessions). We
stress that here (unlike in Section 3) the events E� regarding the decommitment
to block j are not the only things that may happen when we invoke Scan with
27 In particular, we do not care if the decommitment event happens to be of type E�

or not. Furthermore, we may ignore y itself and not use it below (although we may
also use y if we please).
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block index j (which corresponds to Step S1 in Section 3). As in Section 4, the
answer may be failure or progress with respect to a different block. Indeed,
the latter may not occur in case there is only one block, in which case the above
treatment reduces to the treatment in Section 3. It is also instructive to note
that when each block consists of a single session, the above modified procedures
degenerate to the original one (i.e., in Section 4).

To analyze the current setting (of bounded-simultaneity of blocks of parallel
sessions), we plug the analysis of Section 3 into the analysis of Section 4. The
only point of concern is that we have introduced additional recursive calls (i.e.,
in the handling of Step 2, specifically in the handling sub-step 2a). However, as
shown in Section 3, the expected number of these calls is bounded above by a
polynomial (i.e., it is

∑n
�=0 Pr[E�]·2�poly(n), whereas Pr[E�] = O(n·2−�)). Thus,

again, the tree of recursive calls has expected poly(n) branching and depth at
most w. Consequently, again, the expected running-time is bounded by poly(n)w.

Combining the Simulation Techniques – The Real Case. In the real case
the execution decomposes into blocks of almost parallel sessions (rather than per-
fectly parallel ones) such that (again) bounded-simultaneity holds with respect
to the blocks. In view of the extension in Section 3.5, the non-perfect parallelism
within each block does not raise any problems (as far as a single block is con-
cerned). What becomes problematic is the relation between the (non-perfectly
parallel) blocks, and in particular our references to the ordering of steps taken
by the different blocks. That is, our treatment of the perfect-parallelism case
treats the parallel steps of each block as an atom. Consequently we have related
to an ordering of these steps such that if one “block step” comes before another
then all sessions in the the first block take the said step before any session of
the other block takes the other step. However, in general, we cannot treat the
parallel steps of each block as an atom, and the following problem arises: what if
one session of block i takes Step A, next one session of block j �= i takes Step B,
and then a different session of block i takes Step A. This problem seems partic-
ularly annoying if handling the relevant steps requires passing control between
recursive calls. In general, the problem is resolved by treating differently the first
(resp., last) session and other sessions of each block that reach a certain step.
Loosely speaking, the first (or last) such session will be handled similarly to the
atomic case (i.e., as in Section 5.2), whereas in some cases other sessions (of
the block) will be handled differently (in a much simpler manner). In particular,
recursive calls are made only by the first session, and control is returned only
by either the first or last such sessions. For sake of clarity, we present below
the modification to the procedure Generate(h, a, i). Note that this procedure is
invoked when the immediate extension of h calls for execution of Step 2 by the
first session in block i (i.e., h contains no Step 2 by any session that belongs to
block i).

Initialization (upon invocation) step: Initializes h
′
= h and a′ = a, gener-

ates a passing commitment for (Step 2 of) the current (i.e., first) session of
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block i, and augments h
′
and a′ accordingly. Specifically, the commitment is

generated so that it passes the challenge corresponding to the current session
(as recorded in the first field of record i), and only the corresponding part
of the third field of the ith record (in a′) is updated.
In all the following cases, h

′
and a′ denote the current history prefix and

auxiliary information, respectively. (The following cases refer to the next
message to be handled by the procedure, which handles such messages until
it returns.)

Step 1 by some (new) session: Exactly as in the atomic case (i.e., augment
h
′
and proceed to the next iteration).

Step 2 by the first session in block j (certainly j �= i): Analogous to the
atomic case (see Section 5.2). Specifically, the handling depends on whether
or not a′ contains the verifier’s decommitment information for session j (i.e.,
whether or not the first field of the jth record is non-empty).
1. In case a′ does contain such information, we just generate a correspond-

ing passing commitment (i.e., passing w.r.t the first field of the jth

record), augment h
′

and a′ accordingly, and proceed to the next iter-
ation.

2. In case a′ does not contain such information (i.e., the first field of the
jth record is empty), we try to obtain such information. This is done
analogously to the atomic case (see Section 5.2). We stress that this
activity will yield the necessary information for all sessions in the jth

block, and not merely for the current (first) session in the block. Recall
that the handling of this sub-case involves making recursive calls to the
three procedures (with parameters (h

′
, a′, j)).

Step 2 by a non-first session in block j (here j = i may hold): We con-
sider two cases depending on whether or not a′ contains the verifier’s
decommitment information for session j (i.e., whether or not the first field
of the jth record is non-empty).
1. In case a′ does contain such information, we just generate a correspond-

ing passing commitment, augment h
′
and a′ accordingly, and proceed to

the next iteration.
(This is exactly as in the corresponding treatment of the first session of
block j to reach Step 2.)

2. In case a′ does not contain such information (i.e., the first field of the
jth record is empty), we generate a dummy commitment, augment h

′

accordingly, and proceed to the next iteration. (Recall that we count on
the first session in the jth block to find out the necessary information
(for all sessions in the block).)
(This is very different from the treatment of the first session of block j
to reach Step 2.)

Step 3 by a non-last session of block j (possibly j = i): Just augment h
′

accordingly (and proceed to the next iteration).
(This is very different from the treatment of the last session of block j to
reach Step 3.)
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Step 3 by the last session of block j (possibly j = i): Analogous to the
atomic case. We consider two cases depending on whether or not a′ con-
tains the verifier’s decommitment information for block j (i.e., the first field
of the jth block is not empty).

1. In case a′ does contain such information, we consider sub-cases according
to the relation of the contents of the the first field of the jth block,
denoted (E�, z), and the Step 3 answer of the verifier (for all sessions in
the jth block). Specifically, we should consider the answers to previous
sessions in the jth block as recorded in h

′
and the answer to the last

session in the block as just obtained. Recall that the type of the verifier
decommitments (for the sessions in the jth block) is determined using
the sets T� and T�−1 provided in the first field of the jth block. The sub-
cases (fit versus non-fit) are handled as in the original procedure. That
is:
(a) If the decommitment type of the Step 3 answers (of the jth block)

fits E� then we just augment h
′
accordingly (and proceed to the next

iteration).
(b) Otherwise (i.e., the decommitment type of the current Step 3 does

not fit E�), return failure.
(As in the atomic setting this case must hold if j = i.)

2. In case a′ does not contain such information (i.e., the first field of the jth

block is empty), we obtain the relevant decommitment information as in
the previous case, and return (as progress) with this information only.
Specifically, the decommitment information for the previous sessions of
the jth block is recorded in h

′
, whereas the the decommitment informa-

tion for the last session has just been obtained (from the adversary).

Step 4 by a session of block j (possibly j = i): Using the prover’s decom-
mitment information (as recorded in the third field of the jth record), we
emulate Step 4 in the straightforward manner (and augment h

′
accordingly).

If this is the last session of block j and j = i, then return with the current
h
′
and a′ (otherwise proceed to the next iteration).

The modifications to procedure Scan are analogous. We stress that although
the above description treats the schedule as if it is fixed, the treatment actually
extends to a dynamic schedule where the membership of sessions in blocks is
determined on-the-fly (i.e., upon their execution of Step 1). Also recall that
by our assumption that the verifier never violates the time-out condition (cf.
Sec. 2.2), the “last session in a block to reach a certain step” can be determined
as well. The analysis of the perfect case can now be applied to the real case, and
Theorem 1 follows. That is:

Theorem 15 The Time-Augmented GK-protocol is concurrent zero-knowledge
under the timing model.
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6 Other Applications of Our Techniques

As stated in Section 1.3, our techniques are applicable also to several well-known
protocols that have a structure similar to the GK-protocol. Notable examples
include the (constant-round) zero-knowledge arguments of [15] and [4] as well as
the perfect (constant-round) zero-knowledge proof of [5]. In fact, our techniques
are applicable also to protocols with less apparent similarity to the GK-protocol.
One such example is provided by the protocols that result from the transforma-
tion of Bellare, Micali and Ostrovsky [6].

In Section 6.1, we show that our techniques can be applied to the four-round
argument system of Bellare, Jakobsson and Yung [4]. In Section 6.2, we infor-
mally describe a general class of protocols to which our techniques are applicable.

6.1 Application to the BJY-protocol

We start by briefly recalling the BJY-protocol (due to Bellare, Jakobsson and
Yung [4], which in turn builds upon the work of Feige and Shamir [15]). Their
protocol uses an adequate three-round witness indistinguishable proof system
(e.g., parallel repetition of the basic zero-knowledge proof of [19]). Specifically,
we consider a three-round witness indistinguishable proof system (e.g., for G3C)
of the form:

Step WI1: The prover commits to a sequence of values (e.g., the colors of each
vertex under several 3-colorings of the graph). This commitment scheme is
perfectly-binding (and non-interactive; see Footnote 13).

Step WI2: The verifier send a random challenge (e.g., a random sequence of
edges).

Step WI3: The prover decommits to the corresponding values.

(The implementation details are as in Construction 7.) For technical reasons,
it is actually preferable to use protocols for which demonstrating a “proof of
knowledge” property is easier (e.g., parallel execution of Blum’s basic protocol;
cf. [16, Sec. 4.7.6.3] and [16, Chap. 4, Exer. 28]). Given the above, the (four-
round) BJY-protocol (for any language L ∈ NP) proceeds as follows:

1. The verifier sends many hard “puzzles”, which are unrelated to the common
input x. These puzzles are random images of a one-way function f , and
their solutions are corresponding preimages. In fact, the verifier selects these
puzzles by uniformly selecting preimages of f , and applying f to obtain the
corresponding images. Thus, the verifier knows solutions to all puzzles he
has sent.
In the rest of the protocol, the prover will prove (in a witness indistinguish-
able manner) that either it knows a solution to one of (a random subset of)
these puzzles or x ∈ L. The latter proof is by reduction to some instance of
an NP-complete language.
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2. The prover performs Step WI1 in parallel to asking to see a random subset
of the solutions to the above puzzles. Specifically, the puzzles are paired, and
the prover asks to see a solution to one (randomly selected) puzzle in each
pair. Furthermore, in executing Step WI1, the prover refers to a statement
derived from the reduction of the assertion x ∈ L or some of the non-selected
puzzles has a solution.

3. The verifier performs Step WI2 in parallel to sending the required solutions
(to the selected puzzles).

4. The prover verifies the correctness of the solutions provided by the verifier,
and in case all solutions are correct it performs Step WI3.

As shown in [4], the BJY-protocol is a four-round zero-knowledge argument sys-
tem for L. The simulator is similar to the one presented for the GK-protocol.
Specifically, it starts by executing Steps 1–3, while using dummy commitments
(in Step 2). Such a partial execution is called proper if the adversary has re-
vealed all solutions to the selected puzzles (and is called improper otherwise).
In case the partial execution is improper, the simulator halts while outputting
it. Otherwise, the simulator moves to generating a full execution transcript by
repeatedly rewinding to Step 2 and trying to emulate Steps 2–4 using the fact
that (unless it selects the same set of puzzles again (which is highly unlikely)) it
already knows a solution to one of the puzzles not selected (by it) in the current
execution (but rather selected in the initial execution of Steps 1–3). Using such
a solution, which yields an NP-witness to the reduced instance, the simulator
can emulate the WI proof. As in the simulation of the GK-protocol (cf. [17]),
the number of repetitions must be bounded by the reciprocal of the probability
of a proper (initial) execution (as approximated by an auxiliary intermediate
step).28

Given the similarity of the two simulators (i.e., the one here and the one for
the GK-protocol), it is evident that our treatment of concurrent composition
of the GK-protocol applies also to the BJY-protocol. Thus, recalling that the
BJY-protocol is only based on one-way functions, we obtain:

Theorem 16 Assuming the existence of one-way function, there exists a (four-
round) argument system for NP that is concurrent zero-knowledge under the
timing model.

6.2 Application to a General Class of Protocols

In this section, we informally describe a general class of protocols to which our
techniques are applicable. These protocols proceed in four main abstract steps:

28 Unfortunately, this technical issue is avoided by Bellare et. al. [4], but it arises here
(i.e., in [4]) similarly to the way it arises in [17], and it can be resolved in exactly
the same manner. (The issue is that the prover commitments in the initial scan are
distributed differently (but computational-indistinguishably) than its commitments
in the generation process.)
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1. The verifier “commits” to some secret information. Indeed, this “commit-
ment” may be (as in the case of the GK-protocol) the result of applying a
commitment protocol to the said information, but need not be so (cf., e.g.,
the BJY-protocol).

2. Some initial sub-protocol takes place such that its execution can be easily
simulated by a computationally-bounded party that is only given the public
information (i.e., the common input and the transcript of Step 1).
In the GK-protocol, this step consists of the prover’s commitment to a se-
quence of 3-colorings and can be simulated by producing commitments to
dummy values. In other cases (e.g., [6]), this step may be vacuous.

3. The verifier proves knowledge of the secret information it has committed to
in Step 1.
In the GK-protocol, this step amounts to performing the corresponding de-
commitment step.

4. Pending on the prover being convinced, some residual sub-protocol takes
place. The two sub-protocols (of Steps 2 and 4) are such that they can
be easily simulated by a computationally-bounded party that is given the
verifier’s secret (as well as the the public information).
In the GK-protocol, these two steps can be simulated by first sending com-
mitments to corresponding “pseudo-colorings” and next performing the cor-
responding decommitments.

The single-session simulation of the above abstract protocol is similar to the sim-
ulator used for the GK-protocol. Specifically, the simulator starts by performing
Step 1, and then performs Steps 2–3 (by using the corresponding guarantee
regarding Step 2). In case the transcript is unacceptable by the prover, the
simulator halts outputting the truncated transcript. Otherwise, the simulator
invokes the knowledge-extractor that is guaranteed for Step 3, and obtains the
verifier’s secret information.29 Once the simulator has this secret information, it
can simulate Steps 2–4 (by the corresponding guarantee). We warn that indeed
the actual implementation of the simulation procedure is more complex than the
above description (e.g., as in [17], in some cases an approximation sub-step needs
to be added). Still, the interested reader may verify that the techniques applied
in Sections 3–5 extend to the above (abstract) simulation scheme. We informally
conclude that every protocol of the above type is concurrent zero-knowledge under
the timing model.
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Abstract. A fundamental goal of Internet congestion control is to al-
locate limited bandwidth fairly to competing flows. Such flow control
involves an interplay between the behavior of routers and the behav-
ior of end hosts. Routers must decide which packets to drop when their
output links become congested. End hosts must decide how to moderate
their packet transmissions in response to feedback in the form of acknowl-
edgements of packet delivery (acks). Typically this is done according to
the TCP protocol, in which a host maintains a window (the number of
packets that have been sent but not yet acknowledged) that is increased
when an ack is received and decreased when a drop is detected.
Often the selection of packets to be dropped at a router depends on the
order of their arrivals at the router but not on the flows to which the
packets belong. An exception occurs when packets are stratified accord-
ing to their quality of service guarantee; in this case packets at higher
strata are given priority, but within a stratum the packets from different
flows receive the same treatment. A number of methods have been pro-
posed to ensure fairness by selectively dropping packets from flows that
are receiving more than their fair share of bandwidth. The most effective
known algorithms for detecting and selectively dropping high-rate flows
at a router are based on random hashing or random sampling of packets
and give only probabilistic guarantees. The known deterministic algo-
rithms either require excessive storage, require packets to carry accurate
estimates of the rates of their flows, assume some special properties of
the stream of arriving packets, or fail to guarantee fairness. In a simpli-
fied theoretical setting we show that the detection and selective dropping
of high-rate flows can be accomplished deterministically without any of
these defects. This result belies the conventional wisdom that per-flow
state is required to guarantee fairness.
Given an arriving stream of packets, each labeled with the name of its
flow, our algorithm drops packets selectively upon arrival so as to guar-
antee that, in every consecutive subsequence of the stream of surviving
packets, no flow has significantly more than its fair share of the packets.
The main results of the paper are tight bounds on the worst-case storage
requirement of this algorithm. The bounds demonstrate that the stor-
age and computation required to guarantee fairness are easily within the
capabilites of conventional routers.
It is important to acknowedge the limitations of this work. We have for-
mulated the achievement of fairness at a router in terms of local informa-
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tion on the stream of arriving packets at that router. The implications of
such a locally optimal policy on the global stability of the Internet would
require analyzing the Internet as a complex dynamical system involving
interactions among routers and end hosts, of which some will be TCP-
compliant and some will not. In work not reported here we have made
an initial simulation study of this complex process, but such a study is
outside the scope of the present paper.

1 Introduction

The allocation of bandwidth within the Internet involves a complex interaction
among routers that must drop packets when congestion occurs on their output
links, and end hosts that moderate the rate at which they transmit packets in
response to acknowledgements of the delivery of their packets. In the TCP pro-
tocol, which is the canonical protocol expected of end hosts, the rate of each flow
is determined by a dynamically changing window giving the number of packets
that are allowed to be concurrently in transit. To establish a context for our
work we present a highly simplified description of this protocol. Associated with
a flow is a round-trip time (RTT) giving the nominal time from the transmission
of a packet to the arrival of an acknowledgement (ack) of its delivery. In an
initial slow-start phase a source increases its window by 1 every time it receives
an ack, so that the window size doubles every RTT. After this initial phase the
window is increased by 1 every RTT. However, whenever the source infers that a
packet has been dropped, its window is halved. Different versions of TCP make
this inference in different ways, for example by observing that a packet has not
been acknowledged within the RTT, or by detecting a gap in the stream of acks.
Unfortunately, many flows do not follow the TCP protocol, either by intent or
because of misconfiguration at the end host.

Internet flow control is a complex system involving the interactions among
large numbers of routers and end hosts. Understanding the dynamics of this sys-
tem is beyond the scope of the present paper. Instead, we follow in the tradition
of several previous algorithms [1,2,4,5,6,7,8,9] that aim to optimize the decisions
at a router as to which packets to drop and which to forward, based strictly on
information about the flows arriving at the router. The goal of these algorithms
is to identify high-rate flows and selectively drop their packets, thus signaling
that the rates of those flows need to be reduced.

Such algorithms are typically based on the following idealized model. Packets
arriving at a router are to be transmitted along an output link that can accept
data at a certain bit rate R. Each flow a transmits packets at a bit rate r(a). let
f be the largest real number such that

∑
a min(f, r(a)) ≤ R. Then, the fairness

criterion stipulates that, for each flow a, a fraction min(1, f/r(a)) of the packets
for flow a should be transmitted, and the others dropped. This ensures that the
bit rate of accepted packets does not exceed the bit rate of the output link.

This idealized model breaks down when the arrival process of packets is non-
stationary, so that the bit rates of some flows are not well defined. Assuming
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that the rates are well defined, the fairness criterion can be satisfied by keep-
ing, for each flow a of rate greater than f , a variable giving the amount by
which the transmission rate of packets for flow a leads or lags the target rate
f , and scheduling packet drops so as to keep the lead or lag as close to zero as
possible; more simply, the criterion can be approximately satisfied by accepting
each packet for each flow a independently with probability min(1, f/r(a)). The
amount of state needed to estimate the rates r(a) can be excessive, and vari-
ous randomized algorithms based on hashing or sampling techniques have been
suggested for identifying the high-rate flows with high probability and estimat-
ing their rates without using excessive storage. These algorithms do not provide
deterministic guarantees.

Another approach, called core-stateless fair queueing [12], requires that each
router receive an estimate of the rates of each of its arriving flows and provide
an estimate of the rate of each outgoing flow, derived from the flow’s input rate
and the fraction of its packets that are not dropped. If this rate information
can be kept accurately then the fairness criterion can be met without requiring
excessive state.

Finally, fair queueing is an algorithm that achieves fairness even when the
rates are unknown or not well defined. Because of its large storage requirement
it is not a practical general method, but it can serve as a yardstick to which
other methods can be compared. In the case where all packet sizes are equal,
fair queueing is particularly simple: for each flow, a queue of packets that have
been received but not transmitted is maintained; the queues are polled in round-
robin fashion, and, whenever a non-empty queue is polled, it transmits a packet.
The large storage requirement of fair queueing has led to the folk belief that it is
not possible to guarantee fairness without requiring per-flow state. To the best
of our knowledge the present paper is the first to present theoretical results that
belie this belief.

Section 2 gives our definition of fairness. Section 3 gives our algorithm for
dropping packets so as to guaranteed fairness. The algorithm has two param-
eters: ε, a flow’s fair share of the bandwidth of the output link, and r, the
amount by which a flow is allowed to transiently exceed its fair share. These
parameters, together with a packet arrival sequence, determine, for each flow,
a dynamic variable called its excess, and the worst-case storage requirement of
our fair drop policy corresponds to the maximum number of simultaneously pos-
itive excesses. Importantly, our policy differs radically from schemes such as fair
queueing because it does not maintain any queues of packets.

The main body of the paper is devoted to characterizing the worst-case packet
arrival sequences; i.e., the arrival sequences that maximize the number of simul-
taneously positive excesses. Section 4 gives some preliminary observations about
the fair drop policy, and Section 5 then derives one of the main results of the
paper, an exact determination of the maximum number of simultaneously posi-
tive excesses. This key quantity dictates the storage requirement of our fair drop
policy. Sections 6 and 7 then extend this result by deriving tight bounds on the
maximum number of simultaneously positive excesses in the time-bounded case,
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in which an upper bound T is placed on the number of packets accepted. The
approach is to derive the exact worst-case storage requirement of a drop policy
that is slightly more permissive than the policy of interest, and then bound the
difference between the storage requirements of the two policies. The Appendix
gives examples of some worst-case, or nearly worst-case, arrival sequences. In
simplified form, the main results of the paper are that the maximum number
of positive excesses is approximately 1

ε (1 + ln r) if no restriction is placed on
the number of accepted packets, and the worst-case number of positive excesses
is approximately 1

ε (1 − ( r−1
r )Tε−r + ln r) if the number of accepted packets is

bounded above by T .

2 A Fair Drop Policy

Consider a simple router in which arriving packets enter a queue and are then
transmitted in First-In First-Out order along an output link. Whenever the
arrival of a packet would cause the queue to overflow the packet is dropped, irre-
spective of the flow it belongs to. Our fair drop policy would change the router by
interposing a pre-filter that would examine each arriving packet and either drop
it immediately if its acceptance would violate a certain fairness criterion, or else
forward it to the queue. The implementation of the pre-filter does not require
any temporary storage for pending packets, as each packet is dealt with immedi-
ately upon arrival. This property distinguishes our method from fair queueing.
Our pre-filter bases its decision for each packet on a nonnegative integer vari-
able called the excess associated with the flow to which the packet belongs, and
stores no other data. Moreover, most of these excesses will be zero and need not
be explicitly stored. The main result of the paper is an exact determination of
the number of excesses that can be simultaneously positive. It follows that the
amount of storage and processing needed to maintain our pre-filter is well within
the capabilities of existing routers. Our pre-filter is a variant of the token-bucket
schemes that have been suggested as mechanisms for traffic shaping and rate
control [3,10,11,13,14], but the mathematical analysis of its storage requirement
is new.

We next describe our fairness criterion and our algorithm for enforcing fair-
ness. Consider a sequence of packets of equal size arriving at a router to be
transmitted on a single output link. Each packet is labeled with the name of
its flow. Let xi denote the label of the ith packet. The sequence {xi} is called
the arrival sequence. A drop policy is a rule for deciding, as each packet arrives,
whether to drop the packet. For a given drop policy and arrival sequence {xi},
let {yt} be the subsequence of {xi} consisting of the labels of the packets that
are not dropped; {yt} is called the output sequence associated with the arrival
sequence {xi}, and we refer to the operation of placing a label in the output
sequence as hitting the corresponding flow.

Informally, the output sequence is considered fair if no flow significantly ex-
ceeds it fair share in any period. The formal definition is in terms of a (typically
small) positive constant ε defining the fair share of the output bandwidth avail-
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able to any flow, and a positive constant r defining the maximum number of
packets by which a flow may exceed its fair share in any period. Thus, the out-
put sequence {yt} is fair if, for every consecutive subsequence of {yt} and every
label a, the number of occurrences of a within the subsequence is at most r+hε,
where h is the length of the subsequence; here ε represents the maximum fraction
of total bandwidth that should be allocated to any flow in the long run, and r
represents the maximum amount by which a flow may exceed that fraction over
any period.

The fair drop policy is defined by the following rule: drop a packet if and
only if accepting it would make the output sequence unfair. The main result of
this paper is that this policy does not require an excessive amount of state to be
maintained.

In practice the unequal sizes of packets should be taken into account and
the fair share should be a dynamic variable that increases in periods of low
congestion and decreases in periods of high congestion. In particular, no practical
scheme should drop packets unless the output link is congested. To achieve this
property one could use a variant of our policy that marks packets instead of
dropping them. In the execution of the fair drop policy the marked packets
would be treated as if they had been dropped, but they would be forwarded to
the queue. Whenever the queue reached its capacity marked packets would be
dropped in preference to unmarked ones. The low storage requirement of the
fair drop policy opens up yet another alternative, in which the policy would be
executed concurrently for several values of ε (for the same r).All packets would
be forwarded to the queue, but each would be marked with the highest value
of ε, if any, that caused it to be dropped. When the queue reaches capacity a
packet with the highest mark would be dropped.

Although the present paper is restricted to the case of constant ε, similar
upper bounds on the amount of state also hold when the fair share is a dynamic
variable, provided that the variable never dips below a fixed value.

3 An Algorithm Implementing the Fair Drop Policy

We begin by reformulating our criterion for the fairness of the output se-
quence {yt}. We assume that ε is the reciprocal of a positive integer d and
that rd is a positive integer B. For any flow a and time step t let ι(a, t) be
an indicator variable which is 1 if yt = a, and 0 otherwise. Define F (a, T ) as
max(0, maxT ′≤T

∑
T ′≤t≤T (d · ι(a, T )− 1)). Then, as a direct consequence of the

definition of fairness, the output sequence is fair if and only if, for all a and T ,
F (a, T ) ≤ B. F (a, T ) is called the excess of flow a at time T . A flow can receive
a high excess either by having an intense burst of arrivals or by exceeding its
fair share slightly over a long time period, but its excess is not permitted to
exceed B.

The following lemma establishes a simple inductive algorithm for computing
the excess for each flow at each time step:

Proposition 3.1. F (a, T ) = max(0, F (a, T − 1) + d · ι(a, T )− 1)



Fair Bandwidth Allocation Without Per-Flow State 93

Proof. F (a, T ) = max(0, dι(a, T )− 1, maxT ′≤T−1

∑
T ′≤t≤T (d · ι(a, t)− 1)

= max(0, d · ι(a, T )− 1, (d · ι(a, T )− 1) + maxT ′≤T−1

∑
T ′≤t≤T−1(dι(a, t) − 1)

= max(0, d · ι(a, T )− 1, d · ι(a, T )− 1 + F (a, T − 1)
= max(0, F (a, T − 1) + d · ι(a, T )− 1), where the last equality is valid because
F (a, T − 1) ≥ 0.

Thus we can implement the fair drop policy by maintaining the excess of
each flow at each time step using the update rule
F (a, T ) = max(0, F (a, T − 1) + dι(a, T )− 1), and dropping a packet if and only
if accepting it would cause the excess of its flow to exceed B.

Even though our algorithm differs from fair queueing by not storing any
packets, it might appear that the algorithm requires per-flow state in the form
of a nonnegative integer excess for each flow. Hovever, one can radically decrease
the storage requirement of the algorithm by maintaining a data structure that
records only the currently positive excesses; if the excess of a flow a is not found
in the data structure then its value is zero. The goal of the paper is to analyze the
storage requirement of this modified implementation. One should note that, in
contrast to fair queueing, the information being stored consists of small integers
rather than packets.

Our main result is that the maximum possible number of flows with positive
excesses is exactly d + L(B− d + 1−�B+1

d �) where L(u) is a recursively defined
nondecreasing function asymptotic to d ln(u/d). The maximum number of flows
with positive excesses is thus roughly approximated by d(1 + ln B

d ). In terms of
r and ε this number is 1

ε (1 + ln r).
We also derive lower and upper bounds on the number of flows with positive

excesses when the length of the output sequence is fixed at a value T . Thus,
the focus of this paper is on characterizing worst-case examples for the fair
drop policy. The paper is written from the viewpoint of an adversary trying to
demonstrate the weaknesses of the policy and, somewhat perversely, we refer to
these worst-case examples as optimal.

Even though the number of positive excesses is small, it may be undesirable
to decrement each positive excess explicitly at each step. This can be avoided
by maintaining an approximate excess for each flow that becomes incorrect but
gets restored to correctness every d steps. This is achieved by partitioning the
universe of flow labels into d classes, and cyling through these classes so that
at each step, the approximate excess of the arriving flow is increased by an
appropriate amount, and then, instead of decreasing each positive excess by
1, all the positive approximate excesses in one class are decreased by d and
then restored to zero if they became negative. Approximate excesses of zero
are not recorded explicitly. The appropriate amount by which to increase the
approximate excess of the arriving flow is d + max(0, s − e − 1) where e is the
current approximate excess of the flow and s is the number of steps since the
flow’s class was last decremented. This amount is chosen so that the approximate
excess of each flow becomes equal to the true excess just after the step in which
it gets decreased by d. The term max(0, s− e − 1) compensates for those time
steps at which the true excess would have been zero and therefore would not have



94 Richard M. Karp

been decremented. Some excessive storage cost is incurred because the delayed
decrementation of its excess can cause a flow to linger in the data structure
with an incorrect positive approximate excess for up to d− 1 steps after its true
excess has decreased to zero, but it is easy to see that the number of positive
approximate excesses at any step does not exceed the number of positive true
excesses 2d steps earlier by more than 2d, so the device of using approximate
excesses does not increase he worst-case storage bound by more than 2d. .

The formal setting for our results can be described as follows. Consider a
nondeterministic algorithm which, at each step, either hits a flow whose excess
is already positive (an incrementation step), hits a new flow (an initiation step),
or does not hit any flow (a no-op). A no-op can be thought of as adjoining to
the output sequence a flow that is immune from the fairness requirement, or a
flow whose rate is known a priori to be low. Alternatively, we can think of the
link as accepting at most one packet per unit time, and a no-op as a time step
at which no packet is available.

The progress of the algorithm can be described by a sequence of multisets
S0, S1, . . . , Sn, . . ., where St denotes the multiset of positive excesses after the
tth step. The evolution of the nondeterministic algorithm is as follows:

S0 = φ; for t = 1, 2, . . . do:
Set R equal to St−1. Nondeterministically, perform either an incrementation

step, an initiation step or a no-op. Then set St equal to R.

Incrementation step Choose an element x ∈ R such that x ≤ B − d + 1,
replace x by x + d, decrement each element by 1 and delete all occurrences
of 0.

Initiation step Insert the element d into R, decrement every element of R by
1 and delete all occurrences of 0.

No-op decrement every element of R by 1 and delete all occurrences of 0.

For example, if d = 5 and B = 9 and the sequence of steps consists of three
initiation steps followed by three incrementation steps, an initation step and a
no-op, then the sequence of multisets would be:

φ, {4}, {3, 4}, {2, 3, 4}, {1, 7, 3}, {6, 7}, {5, 6, 4}, {4, 5, 3}.
Throughout the paper we assume that B ≥ 2d− 1. Let N(B, d, t) denote the

maximum possible cardinality of St and let N(B, d) = maxt N(B, d, t). Then
N(B, d, t) denotes the maximum possible number of positive excesses after t
steps, and N(B, d) denotes the maximum possible number of simultaneously
positive excesses. In a context where B and d are fixed we abbreviate N(B, d, t)
to Nt and N(B, d) to N . In Section 5 we determine N(B, d) exactly, thus
determining the worst-case storage requirement of the maximally permissive
fair drop policy, and in Section 6 we derive a function R(B, d, t) such that
N(B, d, t) ≤ R(B, d, t) ≤ N(B + d − 1, d, t), thus giving a fairly tight approxi-
mation to N(B, d, t). For a restricted choice of B, d and t an even tighter bound
is given in Section 7.

To aid the reader’s understanding, the Appendix gives examples of some of
the combinatorial constructions used in establishing these bounds.
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4 Preliminary Observations

Before proving the main results let us make a few simple observations. Let s(t)
be the sum of all excesses, and let n(t) be the number of positive excesses, just
after yt has been appended to the output sequence. Then s(t) ≤ s(t−1)+d−n(t).
Thus, for any T , s(T ) − s(0) ≤ dT −

∑T
t=1 n(t). Since s(0) = 0 and s(T ) ≥ 0

we obtain
∑T

t=1 n(t) ≤ dT , which implies that the average number of positive
excesses over the first T steps is at most d.

Next we deviate temporarily from our worst-case analysis to consider a sta-
tionary probabilistic model in which the labels in the arrival sequence are iid
random variables. Let p(a) be the probability of label a. We shall prove that,
at any time t, the expected number of positive excesses is at most d. This is an
immediate consequence of the following lemma.

Proposition 4.1. Let e(a, t) be the excess of label a at time t. For all a and t,
P (e(a, t)) > 0) ≤ dp(a).

Proof. We may restrict attention to the case where dp(a) < 1. Let q(a) = 1−p(a).
For a fixed a the sequence {e(a, t)} is a Markov chain with initial state 0, state
set {0, 1, · · · , B} and the following nonzero transition probabilities:

1. p(0, 0) = q(a) and p(0, d− 1) = p(a).
2. For 1 ≤ i ≤ B − d + 1, p(i, i− 1) = q(a) and p(i, i + d− 1) = p(a).
3. For B − d ≤ i ≤ B, p(i, i− 1) = q(a) and p(i, i) = p(a).

Let us compare this Markov chain with the following Markov chain in which
the state set is the nonnegative integers, the initial state is 0 and the nonzero
transition probabilities are as follows:

1. p(0, 0) = q(a) and p(0, d− 1) = p(a).
2. For i ≥ 1, p(i, i− 1) = q(a) and p(i, i + d− 1) = q(a).

We shall analyze this positive-recurrent infinite-state chain. Let t(i, j) be
the expected time to reach state j from state i. We make the following simple
observations:

For all i > 0, t(i, i− 1) = t(1, 0);
For all (i, j) with j < i, t(i, j) = (i− j)t(1, 0).
t(1, 0) = 1 + p(a)t(d, 0) = 1 + p(a)(dt(1, 0)) = 1

1−dp(a) ;
therefore, for all i > 0, t(i, 0) = i

1−dp(a) . t(0, 0) = 1 + p(a)t(d − 1, 0) = 1 +
(d−1)p(a)
1−dp(a) = 1−p(a)

1−dp(a) .

The stationary probability of state 0 is 1
t(0,0) = 1−dp(a)

1−p(a) , which is greater than
1− dp(a)

Next we compare the two Markov chains. Let M be the transition probability
matrix of the finite-state chain and M∞ the transition probability matrix of the
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infinite-state chain. By induction on t, the following holds for all t and all i and
j such that i ≤ j: M t

i,0 ≥ M
tj,0∞ . Since M is started in state 0 it follows that

the probability that M is in state 0 at time t is greater than or equal to the
stationary probability of state 0 in the infinite-state chain, and hence greater
than or equal to 1−dp(a). Thus the probability that e(a, t) > 0 is at most dp(a).

In this section we have shown that the number of positive excesses, averaged
over the first T arrivals of accepted packets, is at most d, and that,under a simple
probabilistic model, the expected number of positive excesses at any step is at
most d. The worst-case analysis to follow provides stronger guarantees that the
storage requirement of our policy will be small.

5 Maximum Number of Positive Excesses

The results of the previous section suggest that the number of positive excesses
will seldom be much greater than d. However, it is possible to construct an
adversarial sequence of packet arrivals for which the number of positive excesses
becomes much larger than d. In this section we derive an exact formula for N , the
maximum number of simultaneously positive excesses. The formula involves a
function L(u), where u ranges over the positive integers. The function is defined
recursively as follows: L(0) = L(1) = 0
L(u) = 1 + L(u− �u+1

d �), u ≥ 1.
The function L(u) is asymptotic to d ln(u/d).

Theorem 5.1.
N = d + L(B − d + 1− �(B+1

d )�).

Before proving the theorem we give a schedule that achieves the bound given
in the theorem. Instead of describing it as a sequence {St} of multisets, we de-
scribe it in terms of its output sequence. In this description, hitting a flow means
incrementing its excess by d. Each step consists of hitting a flow, decrementing
the excesses of all flows, and discarding excesses that are less than 1. A flow may
be hit only if its excess is less than or equal to B − d + 1.

The schedule consists of three phases.
An Output Sequence with the Maximum Number of Positive Ex-

cesses
Phase 1 Repeat B − d + 1 times: successively hit flows 1, 2, . . . , d − 1. At

this point, the excesses are B, B − 1, . . . , B − d + 2.
Phase 2 Repeat until flow d has the smallest excess among flows 1, 2, . . . , d

and the difference between the largest and smallest positive excesses is at most
d− 1: Hit the flow with the smallest excess among flows 1, 2, . . . , d.

Phase 3 Set T equal to the excess of flow d.
For t = T − 1 down to 1 do:
If every flow with positive excess has an excess greater than or equal to t then
hit a new flow, else hit a flow with the smallest positive excess.
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The proof that this output sequence maximizes the number of simultaneously
positive excesses will be given as part of the proof of Theorem 5.1.

As an example, in the case d = 3, B = 5 the sequence of multisets is
φ, {2}, {1, 2}, {3, 1}, {2, 3},
{4, 2}, {3, 4}, {5, 3}, {4, 5}, {3, 4, 2}, {2, 3, 1, 2},
the output sequence is 1, 2, 1, 2, 1, 2, 1, 2, 3, 4 and N = 4.

Throughout the paper we assume that once a flow is initiated its excess
remains positive at all steps. This is not a significant restriction, since we can
transform any schedule into one satisfying this property by repeatedly applying
the following transformation, which does not affect the score: if the excess of a
flow drops to zero for the last time at step t, substitute no-ops for all hits on
that flow preceding step t.

We approach the proof of Theorem 5.1 through a series of lemmas.

Lemma 5.2. If all the flows in a set S have positive excesses at some step T
and collectively have had exactly u packet arrivals up to and including that step,
then the cardinality of S is at most L(u).

Proof. The proof is by induction on u, with base case u = 1. Consider x, the
first flow in S to experience an arrival. From the time of this arrival up to time
T at least u steps must occur. At each step the excess of x will be increased by
d − 1 if it has an arrival or decreased by 1 if it does not. Therefore, in order
to have a positive excess at time T , x must experience at least �u+1

d � arrivals,
leaving at most u−�u+1

d � arrivals for the flows in S−x. Since L(·) is a monotone
nondecreasing function it follows by induction hypothesis that the cardinality
of S − x is at most L(u − �u+1

d �). Therefore the cardinality of S is at most
1 + L(u− �u+1

d �, which is equal to L(u).

Corollary 5.3. If all the flows in a set S have positive excesses at some step
T and collectively have had at most u packet arrivals up to and including that
step, then the cardinality of S is at most L(u).

The corollary follows from the monotonicity of the function L(·).

Lemma 5.4. At any step, the i-th largest excess is at most B − i + 1.

Proof. Arrange the flows in decreasing order of the times of their most recent
arrivals. Each of these flows had an excess of at most B at the time of that
arrival, and its excess was decreased by 1 at each subsequent step. Thus the
excess of the i-th flow in the ordering at time T is at most B − i + 1 It follows
that at most i− 1 flows can have excesses greater than or equal to B − i + 1.

Proof of Theorem 5.1
Consider t∗, the last step after which fewer than d flows have positive excesses.
Let Q be the set consisting of the d flows with positive excesses after step t∗ +1.
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Number the flows in Q in decreasing order of their excesses just before t∗, with
the number d assigned to the flow initiated for the first time at step t∗ + 1.
After any step t, let ei(t) be the excess of the ith flow in this fixed numbering.
Then, for i = 1, . . . , d − 1, ei(t∗) ≤ B − i + 1, and ed(t∗) = 0. At any step
after t∗ the sum of the excesses of the flows in Q is unchanged if the step hits
a flow in Q, and decreases by d if the step hits a flow not in Q. Let T be the
last step of the schedule. Then the number of steps executed after step t∗ by
flows not in Q is

∑d
i=1(ei(t

∗)−ei(T ))

d We shall derive an upper bound u∗ on this
quantity. It will then follow from Corollary 5.3 that the number of flows whose
first initiation occurs after step t∗ is at most L(u∗), and hence that the total
number of positive excesses at the end of the schedule is at most d + L(u∗).
We observe that, at every step, the excess of flow i is either decreased by 1 or
increased by d− 1; in both cases it is decremented by 1 modulo d. We therefore
have the following invariant: for i = 1, . . . , d, j = 1, . . . , d and t = t∗, . . . , T ,
ei(t)− ej(t) = ei(t∗)− ej(t∗) mod d.

Thus it follows that u∗ is bounded above by the optimal value of the following
integer maximization problem:

Maximize
∑d

i=1(ei(t
∗)−ei(T ))

d subject to

ei(t∗) ≤ B − i + 1, i = 1, . . . , d− 1
ed(t∗) = 0
ei(T ) ≥ 1, i = 1, . . . , d
ei(T )− ej(T ) = ei(t∗)− ej(t∗), 1 ≤ i < j ≤ d

Clearly, in a maximizing solution of this problem, every variable ei(T ∗) lies
between 1 and d. For any integer y, let M(y) be the least positive integer con-
gruent to y modulo d. Then in a maximizing solution ei(T ) = M(ei(t∗)+ed(T )).

Moreover, for a fixed choice of ed(T ), decrementing any variable ei(t∗) cannot
decrease ei(T ) by more than one, and thus cannot increase the objective function
value. It follows that there is a maximizing solution in which each variable ei(t∗),
for i = 1, . . . , d − 1, is equal to its maximum possible value, B − i + 1. Fixing
these values, the above maximization problem reduces to:

minimize
∑d

i=1 ei(T )
subject to ei(T ) = M(B − i + 1 + ed(T )), i = 1, . . . , d− 1.

Given this explicit formula it is easy to see that, in the maximizing solution,∑d
i=1 ei(T ) = d(d+1)

2 + ed(T )−M(B +1+ ed(T ))). This expression is minimized
when ed(T ) = 1, in which case it is equal to d(d+1)

2 + 1−M(B + 2).
The optimal value for the maximization problem (*) is therefore∑d−1

i=0 (B−i+1)− d(d+1)
2 −1+M(B+2)

d

This expression simplifies to B − d + 1− �B+1
d �.

This establishes the upper bound of d + L(B − d + 1− �B+1
d �) on N .

To prove that the output sequence given above achieves the upper bound,
we note the following:
After phase 1 the d− 1 excesses are B, B − 1, B − 2, . . . , B − d + 2. After phase
3 flow d has an excess of 1 and, for i = 1, 2, . . . , d − 1, flow i has an excess
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of M(B − i + 2) It follows that the number of steps at which flows other than
1, 2, . . . , d are hit is u∗. Since those additional flows are hit in consecutive steps,
the number of additional flows with positive excesses after the last step is L(u∗)
and the total number of positive flows after the last step is d + L(u∗), which is
equal to the upper bound.

6 Time-Bounded Schedules

We now investigate NT , the maximum number of positive excesses at time T , As
before, B and d are fixed. We assume throughout this section that B ≥ 2d− 1.
Define the score of a T -step schedule as the number of positive excesses after step
T . Instead of specifying a schedule as a sequence {St} of multisets, we specify it
by its output sequence; i.e., the sequence in which flows are hit.

The earlier a flow is first hit, the larger is the total number of hits the flow
must experience. This suggests that it is desirable to defer the initiation of a new
flow whenever possible, leading to the conjecture that there is an optimal T -step
schedule in which a new flow is initiated only when there does not exist a flow
with a positive excess that requires at least one more hit. However, this conjec-
ture is false. The parameter choice B = 9, d = 7, T = 11 is a counterexample.
The conjectured policy would yield the output sequence 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 7
for a score of 7, but the output sequence 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 8 achieves a score
of 8.

We will give a simple construction that produces a T -step schedule with
threshold B + d− 1 and increment d whose score is at least as great as that of
any T -step schedule with increment d and threshold B. Thus the result is not
quite optimal because we allow a slight relaxation of the threshold. It remains
an open problem to characterize the optimal T -step schedules.

Consider an arbitrary T -step schedule. Number the steps in order of increas-
ing time, so that the first step is numbered 1 and the last step is numbered T .
Flow a is said to be hit at step t if y(t) = a. Let e(a, t) be the excess of flow
a just after step t. Define the function f(x, t) = �(T − t + 1 − x)/d�. Define
hit(a, t) as f(e(a, t), t). Then hit(a, t) is the number of times flow a must be hit
in steps t + 1, t + 2, · · · , T , given that its excess after step t is e(a, t) and its
excess after step 1 is required to be positive. Let start(t) = max(0, f(d − 1, t))
and low(t) = max(0, f(B, t)). Then start(t)+1 is the total number of times that
a flow must be hit if its first hit occurs at step t, and low(t) is a lower bound on
the number of times that a flow is hit during the last T − t steps if its excess is
positive at step t and all subsequent steps.

For any T -step schedule (with increment d and threshold B) the function
hit(a, t) has the following easily checked properties, which hold for all a and t:

1. If flow a is hit for the first time at step t then hit(a, t) = start(t);
2. For all a and all t, hit(a, t) ≥ low(t);
3. hit(a, t) = hit(a, t− 1) if y(t) �= a and hit(a, t) = hit(a, t− 1)− 1 if y(t) = a.
4. hit(a, T ) = 0



100 Richard M. Karp

The requirement that hit(a, T ) = 0 for all a is implied by the requirement
that all excesses must be positive at the last step.

We now relax our scheduling problem by considering all T -step schedules
for which the function hit(a, t) satisfies the above four properties. We call these
schedules relaxed T -step schedules. To distinguish the schedules previously de-
fined from relaxed schedules we sometimes refer to the original schedules as strict
schedules Every strict T -step schedule also qualifies as a relaxed T -step sched-
ule (more precisely, it has the same output sequence as some relaxed T -step
schedule).

Lemma 6.1. In every relaxed schedule the following holds for all flows a and
times t: e(a, t) ≤ B + d− 1.

Proof. low(t) ≤ hit(a, t) Therefore, f(B, t) ≤ f(e(a, t), t). Using the definition
of f we obtain: T−t+1−B

d ≤ �T−t+1B
d � ≤ �T−t+1−e(a,t)

d ≤� ≤ T−t+1−e(a,t)+d−1
d .

Hence T − t + 1−B ≤ T − t + 1− e(a, t) + d− 1, giving e(a, t) ≤ B + d− 1.

We will exhibit a family F of optimal relaxed T -step schedules which follow
the natural rule that a new flow is initiated only when it is not possible to hit
any existing flow (recall that this natural rule is not optimal under the original
definition of a schedule). Moreover, the optimal relaxed schedules in F have
an important property that is not shared by relaxed schedules in general: once
a flow has been initiated, its excess remains positive at all subsequent steps.
Thus, for these special relaxed schedules, the score coincides with the number
of positive excesses after the last step, and the only deviation from the original
definition of a strict schedule is that the excess of a flow may exceed the threshold
B by as much as d − 1. Because of this property we can derive near-optimal
strict schedules with threshold B by constructing optimal relaxed schedules for
threshold B − d + 1.

Call a flow a eligible at time t if t > 1 and hit(a, t− 1) > low(t). A schedule
lies in F if:

1. At any step at which an eligible flow exists, an eligible flow with the largest
possible hit-value is hit.

2. If there exists no eligible flow at time t then a new flow is initiated, and this
flow is hit in consecutive steps as long as it remains eligible. This series of
steps is called the initial run of the flow.

In the next two sections we prove that every scedule in F maintains positive
excesses at all times. Then, using long but conceptually simple interchange argu-
ments, we shall show that there is an optimal relaxed schedule that never starts
a new flow when an eligible flow exists, or devotes a step to a no-op. It will then
follow that that the schedules in F are optimal among relaxed schedules.
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6.1 F Maintains Positive Excesses

Theorem 6.2. Eery relaxed schedule in F has the property that, once a flow
has been initiated, its excess remains positive at all subsequent steps.

In preparation for the proof of the theorem, define the jth epoch as the set of
(consecutive) time slots t such that low(t) = j. The following properties follow
easily from the definitions.The low(T )th epoch occurs first, followed successively
by the remaining epochs in decreasing order of their low(·) values. Epoch 0
contains B time slots, epochs 1, 2, · · · , low(T ) − 1 contain exactly d time slots
each, and epoch low(T ) contains at most d time slots. Define dif(t) as start(t)−
low(t). Then over the domain {B − d + 1, . . . , T} the range of dif(t) consists of
two consecutive integers, and dif(t) is periodic with period d and nonincreasing
within each epoch. Define gap(a, t), the gap of flow a at time t as hit(a, t)−low(t).

Note that, if hit(a, t) < start(t) then e(a, t) ≥ d. Thus, e(a, t) can be non-
positive only if hit(a, t) ≥ start(t) which is equivalent to gap(a, t) ≥ dif(t). We
shall show that this inequality can hold only during the initial run of a flow. The
theorem will follow, since it is clear that the excess of a flow during its initial
run is positive.

To show that gap(a, t) ≥ dif(t) only during the initial run of a flow we
consider how the gap of a flow varies from step to step. When the flow is first
initiated at some step t, its gap becomes dif(t). Therafter, its gap decreases by
1 whenever it is hit, increases by 1 after the completion of each epoch, and never
becomes negative. The initial run of a flow continues until its gap becomes zero,
and during the initial run the flow is hit at every step.

We first consider time steps t that are outside epoch 0 (i.e., we assume that
t ≤ T − B + 1). Let g be the maximum, over all t ≤ T − B + 1, of dif(t).
Then, for all t ≤ T −B + 1, dif(t) is either g or g − 1. Thus, e(a, t) = 0 only if
gap(a, t) ≥ g − 1.

Call step t a renewal step if each flow has a gap of zero.

Lemma 6.3. At every renewal step outside epoch 0, the number of active flows
is less than d.

Proof. Define the state of a schedule in F just after any step as (X, Y ), where
X is the sum of the gaps of all flows and Y is the number of flows that have
been initiated. We shall prove by induction that, upon the completion of any
epoch except epoch 0, Y ≤ d and X = 0 if Y = d. This holds for epoch low(T ),
which is the base case of the induction. For the induction step, let (X, Y ) be
the state after the completion of epoch j + 1, where j ≥ 1, and let (X ′, Y ′) be
the state after the completion of epoch j. We may assume that X ≥ 1, since at
least one flow will have been initiated before the completion of epoch j + 1. If
X + Y ≥ d then X ′ = X + Y − d and Y ′ = Y . In this case, Y ′ ≤ d and it is
not possible that (X ′, Y ′) = (0, d), since that would imply that (X, Y ) = (0, d),
contradicting the induction hypothesis. If X+Y < d then the state will be (0, Y )
after the first X + Y steps of epoch j, and the remaining d−X − Y steps will
be given over to the initial runs of new flows. From the inequality B ≥ 2d− 1 it
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follows that, for every t ≥ d, start(t) > low(t), so every initial run contains at
least two steps. It follows that either X + Y = d− 1, in which case X ′ = 1 and
Y ′ = Y +1, or X +Y < d−1, in which case the number of flows initiated during
the last d−X−Y steps of epoch j is strictly less than d−X−Y , implying that
Y ′ < Y + (d −X − Y ) = d − X , so Y ′ < d. In both cases, the induction step
succeeds.

Having verified the inductive claim we may now assume that, at the end of
epoch j + 1, Y ≤ d and X > 0 if Y = d. If X + Y > d then there is no renewal
step in epoch j. If X + Y = d then X > 0 and the only renewal step is at the
end of epoch j, when the state is (0, Y ) with Y < d. If X + Y = d− 1 then the
only renewal step in epoch j occurs at the penultimate step of the epoch, and
the state is (0, d− 1). If X + Y < d− 1 then Y ′ < d and the state (0, d) cannot
occur during epoch j.

We proceed to the proof of Theorem 6.2.

Proof. Consider a relaxed schedule in F . We shall prove that, for every flow a,
gap(a, t) ≥ 1 at all steps that are not within the initial run of flow a. From this
it follows, as explained above, that, once a flow has been initiated, its excess
never dips below 1. We first consider the time steps outside epoch 0. By Lemma
4, the number of active flows at a renewal step is at most d− 1. The initiation
of a new flow occurs immediately after a renewal step. Its initial gap is at most
g, and it drops by 1 at each step of the initial run except for the first step of
an epoch, when the gap does not change. The initial run ends when the gap
becomes zero. It follows that at most � g

d−1� new epochs can start during the
initial run of a flow, since d steps intervene between the starts of successive
epochs. Thus, after the initial run of the new flow, each of the other flows has
a gap of at most � g

d−1�, since these gaps are incremented only at the start of
a new epoch. There then follows a sequence of steps in which the d or fewer
active flows are hit, during which the flow with the largest gap is hit at each
step. This continues until all gaps are reduced to 0, producing a renewal step.
During this sequence no gap will exceed � g

d−1� + 1 and, provided this value is
less than g − 1 (a lower bound on dif(t) outside epoch 0) gap(a, t) will remain
less than dif(t) except possibly during the initial run of a flow, implying that
the excess of a flow never dips below 1 after the flow has been initiated. The
contrary inequality � g

d−1�+ 1 ≥ g − 1 holds only if g ≤ 2 or d ≤ 4. These cases
can be checked by a separate case analysis, showing that hit(a, t) ≥ start(t) only
during the initial run of a flow, as required for the proof. The case where t lies in
epoch 0 is simpler, because gap(a, t) cannot increase during epoch 0, and yields
to a similar calculation.

6.2 F Is Optimal

Next we show that every relaxed schedule in F is optimal among relaxed sched-
ules. To do so, we shall show that there is an optimal relaxed schedule that never
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starts a new flow when an eligible flow exists, or devotes a step to a no-op. This
is done by showing how to transform any relaxed schedule into one satisfying
these requirements, without reducing its score.

Define the potential of flow a at time t as hit(a, t − 1) − low(t). Define the
state of a relaxed schedule before step t as an ordered pair (X(t), Y (t)), where
Y (t) is the number of flows that have been initiated at previous steps and X(t)
is the sum of the potentials of those flows at step t. Note that this definition of
state differs from the definition used in the proof of Theorem 6.2

The state evolves according to the following rules:

1. (X(0), Y (0)) = (0, 0).
2. There is an eligible flow at step t if and only if X(t) > 0;
3. If t is not the last time step of an epoch then

(a) If an eligible flow is hit at time t then (X(t+1, Y (t+1)) = (X(t)−1, Y (t)).
(b) If there is a no-op at time t then (X(t + 1), Y (t + 1)) = (X(t), Y (t)).
(c) If a flow is initiated at time t then (X(t + 1), Y (t + 1)) = (X(t) +

dif(t), Y (t) + 1)
4. If t is the last time step of an epoch then

(a) If an eligible flow is hit at time t then (X(t + 1, Y (t + 1)) = (X(t) +
Y (t)− 1, Y (t)).

(b) If there is a no-op at time t then (X(t+1), Y (t+1)) = (X(t)+Y (t), Y (t)).
(c) If a flow is initiated at time t then (X(t + 1), Y (t + 1)) = (X(t)+ Y (t)+

dif(t), Y (t) + 1)

Motivated by these properties we define, a trace of duration T as a sequence of
states {(X(t), Y (t))}, for t = 0, 1, . . . , T , satisfying the following properties:

1. (x(0), y(0)) = (0, 0);
2. If t is not the last step of an epoch and X(t) = 0 then (X(t + 1), Y (t + 1)) ∈
{(0, Y (t)), (dif(t), Y (t) + 1)};

3. If t is not the last step of an epoch and X(t) > 0 then (X(t + 1), Y (t + 1)) ∈
{(X(t)− 1, Y (t)), (X(t), Y (t)), (X(t) + dif(t), Y (t) + 1)};

4. If t is the last step of an epoch and X(t) = 0 then (X(t + 1), Y (t + 1)) ∈
{(Y (t), Y (t))), (dif(t) + Y (t), Y (t) + 1)};

5. If t is the last step of an epoch and X(t) > 0 then (X(t + 1), Y (t + 1)) ∈
{(X(t)+Y (t)−1, Y (t)), (X(t)+Y (t), Y (t)), (X(t)+dif(t)+Y (t), Y (t)+1), };

6. X(T ) = 0.

We define the score of a trace as Y (T ).

Lemma 6.4. The state sequence of any relaxed schedule is a trace with the
same score as the relaxed schedule, and for every trace there exists a relaxed
schedule with the same score as the trace.

Call two relaxed schedules trace-equivalent if they share the same trace. All
relaxed schedules in F are trace-equivalent, and their trace-equivalence class
includes additional schedules, some of which do not have the property that,
once a flow has been initiated, its excess remains positive.
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In view of the correspondence between relaxed schedules and traces, the
problem of finding the maximum score of a relaxed schedule is reduced to the
problem of finding the maximum score of a trace. We will prove that the traces
of the relaxed schedules in F have the maximum score among T -step traces.
The proof will be inductive, where the induction step involves consideration
of traces of length less than T , and with initial states other than (0, 0).For this
purpose we define a U -step generalized trace as a sequence of states (X(t), y(T )),
t = 0, 1, . . . , U having all the properties required for a trace except that the
initial state (X(0), Y (0)) is an arbitrary ordered pair of nonnegative integers.
A generalized trace is optimal if it has the maximum score among generalized
traces with the same number of steps and initial state. For any initial state, the
canonical generalized trace is the generalized trace determined by following the
set of rules defining F , starting at the given initial state. For certain initial states
this leads to a final state with X(U) > 0. in which case no canonical generalized
trace exists. We will find that, in such cases, no generalized trace exists , as a
state (X(U), Y (0)) with X(U) = 0 is unattainable from the initial state.

For any initial state (X(0), Y (0)) define score((X(0), Y (0)), U) as the score
of an optimal U -step generalized trace U with initial state (X(0), Y (0)), or 0 if
no such optimal generalized trace exists.

We call the following result the Monotonicity Lemma.

Lemma 6.5. For any initial state (X(0), Y (0)), score(X(0), Y (0)), U) ≥
score(X(0) + 1, Y (0)), U).

Proof. Consider an optimal generalized trace τ of duration U with initial state
(X(0)+ 1, Y (0)). The generalized trace τ must include a step t at which X(t) <
X(t − 1). We construct a trace τ ′ with initial state X(0), Y (0)) with the same
score as τ . The two traces are identical except at step t, where τ ′ has a no-op
and τ hits an eligible flow.

A generalized trace is called initiation-avoiding if it never initiates a new flow
at a step where an existing flow is eligible.

Lemma 6.6. For every initial state (X(0, Y (0)) such that an optimal U -step
generalized trace exists, there is an optimal U -step generalized trace that is
initiation-avoiding.

Proof. The proof is by induction on U . For the base case U = 1 the only situ-
ation of interest is when X(0) = 1. In this case, the only action that leads to a
generalized trace is to hit the eligible flow. Thus, in the base case U = 1, when-
ever an optimal generalized trace exists there is an optimal initiation-avoiding
generalized trace.

For the induction step it suffices to show that, for every initial state
(X(0), Y (0)) where X(0) > 0 such that an optimal U -step generalized trace
exists, there exists an optimal U -step generalized trace whose first action is to
hit an eligible flow. For contradiction, suppose that this is not true for initial
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state (X(0), Y (0)). The state after step 1 resulting from hitting an eligible flow
is (X(0)− 1, Y (0)) and the state after step 1 resulting from starting a new flow
is (X(0) + dif(0), Y (0) + 1). We derive a contradiction by showing that the
score achievable from (X(0) − 1, Y (0)) by an optimal (U − 1)-step generalized
trace is at least as great as the score achievable from (X(0) + dif(0), Y (0) + 1)
by an optimal (U − 1)-step generalized trace. By induction hypothesis we may
assume that there is an optimal (U − 1)-step generalized trace τ with initial
state (X(0) + dif(0), Y (0) + 1) that is initiation-avoiding. We shall construct
a (U − 1)-step generalized trace σ starting at (X(0) − 1, Y (0)) that achieves
at least as high a score as τ . As long as σ can emulate the actions of τ it
does so. This will continue until some step t at which σ is in state (0, Y (t))
and τ is in state (dif(0) + Δ, Y (t) + 1), where Δ is the number of epochs
that intersect the interval [0, t]. At this point τ hits an eligible flow and en-
ters the state (dif(0) + Δ− 1, Y (t) + 1) and σ starts a new flow and enters the
state (dif(t), Y (t) + 1). But |Delta ≥ 1| and, using the fact that the function
dif is periodic with period d outside epoch 0 and nonincreasing within each
epoch, it follows that dif(0) ≥ dif(t) − 1 and, if Δ = 1 dif(0) ≥ dif(t). Thus,
dif(0)+Δ−1 ≥ dif(t), so, by the monotonicity lemma, the state of σ is at least
as favorable as the state of τ , and it follows that σ can be completed so as to
achieve at least as high a score as τ . This contradiction completes the induction
step.

Our next goal is to show that, from initial state (0, 0), there is an optimal
initiation-avoiding trace that contains no no-ops.

Lemma 6.7. In an initiation-avoiding trace starting at state (0, 0), it is not
possible to reach a state (0, Y ) with y ≥ d during epochs low(T ), low(T−1), . . . , 1.

The inductive proof is similar to the proof of Lemma 6.3.

Theorem 6.8. If there exists an optimal trace, then there exists an optimal
initiation-avoiding trace without no-ops.

Proof. Lemma 6.6 states that, if there exists an optimal trace, then there exists
an optimal initiation-avoiding trace. Let τ be an optimal initiation-avoiding trace
containing at least one no-op. We shall show that there is an optimal initiation-
avoiding trace in which the last no-op in τ is replaced by an optimal initiation-
avoiding trace τ ′ which coincides with τ up to the step t where the last no-op in
τ occurs, and does not have a no-op at step t. Repetition of this transformation
eventually leads to an optimal initiation-avoiding trace free of no-ops.

Let the last no-op in τ be a repetition of the state X, Y at times t− 1 and t.
We carry out the following case analysis.

X > 0 Since X > 0 there is an eligible flow at step t and, by hitting such a flow,
state (X − 1, Y ) is reached at step t. By the monotonicity lemma, this state
has at least as high a (T − t)-step score as state (X, Y ). and so optimality is
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not lost by moving to state (X − 1, Y ) at step t. Thus τ can be replaced by
an optimal initiation-avoiding trace in which the states at steps 1, 2, . . . , t−1
are unchanged and there is no no-op at step t.

X = 0 and t is not the last step of its epoch Since the last no-op in τ oc-
curs at step t, τ starts a new flow at step t + 1, arriving at the state
(X + dif(t + 1), Y + 1). Instead it is possible to start a new flow at step
t, arriving at the state X +dif(t), Y +1, and then hitting that flow, arriving
at state (X + dif(t) − 1, Y + 1) which, by the monotonicity lemma, has at
least as high a score as (X + dif(t+1), Y +1), since dif(t)− dif(t+1) ≤ 1.
Thus the no-op at step t can be removed without loss of optimality, and the
trace remains initiation-avoiding.

X = 0 and t is the last step of its epoch In this case, instead of ending the
epoch in the state (0, Y ) it is possible to replace the no-op at step t by
the initiation of a flow, producing the state (dif(t), Y + 1). We now invoke
Lemma 6.7, which tells us that Y ≤ d− 1. If the epoch ends in state (0, Y )
then, since the trace is initiation-avoiding and has no further no-ops, the next
epoch starts with Y hits on eligible flows followed by an initiation, leading to
the state dif(t+Y +1, Y +1) after step t+Y +1. On the other hand, if the state
after step t is (dif(t), Y + 1) then the next epoch starts with dif(t) + Y + 1
hits on eligible flows. After the first Y +1 steps of the epoch the state will be
(dif(t), Y +1). By the monotonicity of dif within an epoch and the fact that
it is periodic with period d, it follows that dif(t) ≤ dif(t+Y +1), so, by the
monotonicity lemma, the state (dif(t), Y +1) has at least as high a score as
the state (dift+Y +1, Y +1), and thus it is possible to eliminate the no-op at
step t without losing optimality or the property of being initiation-avoiding.

Since the canonical T -step trace is completely characterized by the properties of
being initiation-avoiding and free of no-ops, it follows that it is optimal among
T -step traces. Because of the equivalence between the score of a relaxed schedule
and the score of its trace, it follows that the relaxed schedules in F are optimal.
Moreover, they have positive excesses at every step, so their only defect is that
an excess may be as high as B + d− 1 whereas, in a strict schedule, the excesses
are bounded above by B.

7 Bounds on the Optimal Score

Since every strict schedule can be viewed as a relaxed schedule with the same
parameters, N(B, d, T ) ≤ R(B, d, T ). Since every relaxed schedule in F with
parameters B and d can also be viewed as a strict schedule with parameters
B + d− 1 and d, N(B, d, T ) ≥ R(B + d− 1, d, T ).

The following theorem shows that tighter lower bounds on N(B, d, T ) can be
obtained in a special case.

Theorem 7.1. If there are integers s ≥ 2 and k ≥ d such that B = ds− 1 and
T = (k + d)s− 1 then R(B, d, T ) ≤ (d + 1)(1− ( s−1

s )k) s−1
s + dHs, N(B, d, T ) ≥

(d−s+1)(1−( s−1
s )k s−1

s +(d−2)Hs. and thus R(B, d, T )−N(B, d, T ) ≤ s+2Hs.
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The motivation for the restriction on B is as follows. Recall that, within a
relaxed schedule in F , if a flow is initiated at step t and its initial run takes place
entirely within a single epoch, then it is hit start(t) − low(t) + 1 times in its
initial run. The stated restriction implies that (d−1)(start(t)− low(t)+1) ≤ B,
ensuring that the excess of the flow upon the completion of such an initial run
does not exceed B. This suggests a way of modifying the relaxed schedules in
F so as to avoid reaching an excess greater than B, simply by refraining from
executing any initial run that cannot be completed within a single epoch. The
resulting schedule will be strict and will have a score close to R(B, d, T ), the score
achieved by the relaxed schedules in F . This idea is the basis for the following
proof.

Proof. We describe a strict T -step schedule ρ with threshold B and increment d
that achieves a score of at least R(B, d, T )− (s+2Hs). The schedule satisfies the
following inductive assertion: for j = low(T ), low(T )− 1, . . . 1, every flow a that
is eligible just before the first step t of epoch j satisfies h(a, t + 1) = low(t) + 1;
i.e., each eligible flow has a potential of 1. Let a(j) be the number of such eligible
flows. The last a(j) steps of epoch j are used to hit each of these eligible flows
once. During these steps the flows are hit in increasing order of their excesses.
The first d − a(j) steps of epoch j are used for the initial runs of new flows.
However, no initial run is started unless it can be completed within the same
epoch. No-ops are assigned to those time steps that are used neither for initial
runs nor for hitting eligible flows. Epoch 0 proceeds as follows: at any step at
which an eligible flow exists, an eligible flow with the smallest possible excess is
hit; otherwise, a new flow is initiated and is hit at consecutive steps as long as
it remains eligible.

Under the stated restriction on B, all excesses occurring in the course of
schedule ρ lie between 1 and B. Thus ρ is a strict schedule. The main difference
in performance between ρ and the optimal relaxed schedules in F is that ρ never
undertakes an initial run unless that run can be completed in the same epoch,
whereas the schedules in F allow initial runs that cross epoch boundaries.

We now estimate R(B, d, T ) and compare it with the count of the strict
schedule ρ. Under the stated restriction ( B = sd − 1 and T = kd + B) the
successive epochs are indexed k, k− 1, · · · , 0. Epochs k, k− 1, · · · , 1 each consist
of d time steps, and at every time step t within these epochs, start(t)− low(t) =
s − 1, so the length of an initial run is s if the run is entirely within an epoch,
and s + 1 if the run crosses an epoch boundary. Epoch 0 has B time steps, and
consists of s successive subintervals, Is, Is−1, · · · , I1. Each subinterval except the
final one, I1, is of length d, andI1 is of length d − 1. For any i, the initial runs
initiated in subinterval Ii are of length i.

The strict schedule ρ and the relaxed schedules in F achieving the count
R(B, d, T ) behave similarly throughout epoch 0. In each case, let x denote the
number of flows whose initial runs are completed during epochs k, k − 1, . . . , 1.
Then x ≤ d. Each of these flows gets hit once in each epoch after the completion
of its initial run and has a gap of 1 at the beginning of epoch 0. Epoch 0
begins by hitting each of these x flows once, and then continues with a series
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of initial runs. The final score lies between x s−1
s + (d − 2)Hs and x s−1

s + dHs

where Hs = 1 + 1/2+ 1/3+ . . . 1/s. Thus the problem of determining the scores
achieved by these schedules revolves around finding x, the number of flows that
complete their initial runs in the first k epochs.

To estimate R(B, d, T ) we consider a relaxed schedule that is initiation-
avoiding and free of no-ops; such schedules are optimal. To get an upper bound
we pretend that an initial run in epochs k, k − 1, . . . , 1 is of length s whether
or not it crosses the boundary between two epochs. This inaccuracy can only
increase the score. Under this inaccurate assumption, let aj be the number of
steps devoted to initial runs during epochs k, k−1, . . . , j. Then �aj

s � is an upper
bound on the number of initial runs actually completed during those epochs.
Each of the �aj

s � flows whose initial run is completed prior to epoch j − 1 is hit
once in epoch j − 1, and the remaining d − �aj

s � time steps in epoch j − 1 are
devoted to initial runs. Thus we obtain the recurrence aj−1 = aj +d−�aj

s � with
the initial condition ak = d. Then aj−1 ≤ s−1

s aj + d + 1, and it follows that
aj ≤ (d + 1)s(1 − ( s−1

s )k−j+1). Therefore the number of initial runs completed
by the end of epoch 1 is at most (d + 1)(1− ( s−1

s )k).
Now consider the first k epochs of schedule ρ. In this schedule each initial run

is of length s, but no initial run is allowed to cross an epoch boundary, so up to
s−1 time steps in each epoch may be wasted on no-ops. Let bj denote the number
of steps devoted to initial runs during epochs k, k − 1, . . . , j. Then bj−1 ≥ bj +
d−s+1−� bj

s � with the initial condition bk+1 = 0. Then bj−1 ≥ s−1
s bj +d−s+1,

and it follows that bj ≥ (d − s + 1)s(1− ( s−1
s )k−j+1). Therefore the number of

initial runs completed by the end of epoch 1 is at least (d− s + 1)(1− ( s−1
s )k.

Combining the bounds for an optimal relaxed schedule and for ρ we conclude
that R(B, d, T )−N(B, d, T ) ≤ s + 2Hs, completing the proof.

Expressing the bound of Theorem 7.1 in terms of B, d and T we find that
R(B, d, T ) is approximately d(1 − (B−d

B )
T−B

d )B−d
B + HB/d). and R(B, d, T ) −

N(B, d, T ) ≤ B+1
d + 2HB+1

d
.

The key property that makes Theorem 7.1 work is that an initial run of
length start(t) − low(t) + 1 does not create an excess greater than B. This
property holds whenever, for some positive integer s ≥ 2, s(d− 1) ≤ B ≤ sd− 1
and T ≥ 2B. Theorem 7.1 can be extended to show that, in all such cases,
R(B, d, T )−N(B, d, T ) ≤ s + O(Hs). The proof is omitted.

8 Conclusion

This paper analyzes a scheme for selectively dropping arriving packets to en-
sure that in each interval within the sequence of accepted packets, no flow may
exceed its fair share of packets by more than r. Here the fair share of a flow
within an interval is defined as ε times the length of the interval, and the param-
eter r specifies the amount by which the fair share can be exceeded transiently.
The goal of the paper is to determine the maximum number of flows for which
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state must be kept simultaneously in order to implement this scheme; this is
equivalent to the number of simultaneously positive excesses, where the excess
of a flow represents the amount by which it currently exceeds its fair share.
An extensive combinatorial analysis is carried out to determine the worst-case
output sequences and their storage requirement, leading to the final conclusion
that the maximum number of simultaneously positive excesses is approximately
1
ε (1 + ln r) if no restriction is placed on the number of accepted packets, and
is apprioximately 1

ε (1 − ( r−1
r )Tε−r + ln r) if the number of accepted packets is

bounded above by T . These results belie the folk belief that guaranteeing fair-
ness requires per-flow state, and demonstrate that fairness can be guaranteed
by a policy that can easily be implemented within the storage and comptational
capabilities of a conventional router.

Appendix

For the case B = 39, d = 10, T = 69 we present the output sequences of an
optimal relaxed schedule in F , the strict schedule ρ and a strict schedule based
on the following heuristic: if there is an excess less than or equal to B− d+1 hit
the flow of lowest excess, else start a new flow. Letters of the alphabet are used
as flow labels, and − denotes a no-op. Each output sequence is given as a series
of rows, where each row corresponds to an epoch or a phase within epoch 0.The
schedules establish that R(39, 10, 69) = 25 and 23 ≤ N(39, 10, 69) ≤ 25.

A Relaxed Schedule in F
A A A A B B B B C C
C C C A B D D D D E
E E E E A B C D F F
F F F G G G G H H H

H I I I J J J K K K
L L M M N N O O P P
Q R S T U V W X Y

The Strict Schedule ρ

A A A A B B B B - -
C C C C D D D D A B
E E E E - - A C B D
F F F F - A C B D E
G G G H H H I I I J

J J K K L L M M N N
O P Q R S T U V W
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A Heuristic Strict Schedule

A A A A B B B B C C
C C A D D D D B C E
E E E A E B F F F F
C E A D B G G G G F

C E H H H I I I J J
J K K L L M M N N O
O P Q R S T U V W
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Abstract. Consider a simple network flow problem in which a flow of
value D must be split among n channels directed from a source to a sink.
The initially unknown channel capacities can be probed by attempting
to send a flow of at most D units through the network. If the flow is not
feasible, we are told on which channels the capacity was exceeded (binary
feedback) and possibly also how many units of flow were successfully sent
on these channels (throughput feedback). For throughput feedback we
present optimal protocols for minimizing the number of rounds needed
to find a feasible flow and for minimizing the total amount of wasted flow.
For binary feedback we present an asymptotically optimal protocol.

1 Introduction

Suppose you are daily producing 1000 copies of a newspaper, and you do not
know how many will be bought at each of the newspaper stands in a new city.
On a given day you place qi copies at the ith newspaper stand and at the end
of the day you get reports on how many have been sold at each stand. Based
on that, you update the qi for the next day. How many days does it take before
you figure out the optimal way of distributing your newspapers? How do you
minimize the number of unsold newspapers? Can you minimize both the number
of days and the total number of unsold newspapers at the same time?

In the present paper we study different variants of these questions and pro-
pose optimal protocols for solving them. An Internet service provider might
use such protocols to distribute bandwidth among channels with unknown ca-
pacities [1]. On a smaller scale, a user of a peer-to-peer network who tries to
service parallel download requests from different peers also faces the problem of
distributing her fixed, often small, bandwidth among the peers.
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1.1 Problem Statement

Consider the network flow problem in which there are n channels directed from
a source to a sink, and we wish to determine a feasible flow of value D from the
source to the sink. Each channel i has a capacity ci. Initially, these capacities
are unknown, but we know that they are nonnegative, integral, and sum up to
some C ≥ D. We consider only the static case in the present paper, that is, we
assume that capacities do not change over time. To determine a feasible flow
we proceed in rounds t = 1, 2, 3, . . . , T . In round t we choose a query vector
q(t) =

(
q1(t), q2(t), . . . , qn(t)

)
and, simultaneously for all i, attempt to send qi(t)

units of flow through channel i. The queries are nonnegative, rational, and sum
up to at most D. We then receive feedback about the success of our attempts
in the form of a feedback vector f(t) =

(
f1(t), . . . , fn(t)

)
. In the case of binary

feedback we learn, for each channel i, whether all of our flow reached the sink;
that is, fi(t) = success when qi(t) ≤ ci and fi(t) = failure otherwise. In the
case of throughput feedback we learn how much flow was delivered through each
channel; that is, fi(t) = min{qi(t), ci}.

We study the efficient choice of the successive query vectors. We may be
interested in minimizing the number of rounds required to determine a feasible
flow, or in finding a feasible flow with minimum total waste. In the latter case,
the throughput P (t) =

∑n
i=1 min{qi(t), ci} of round t is the total amount of flow

that reaches the sink, the waste W (t) in round t is D−P (t), and the total waste
is the sum of the waste over all rounds.

Our aim is to find optimal protocols, for each type of feedback, that out-
put a feasible solution in a minimal number of rounds or cause a minimal
amount of total waste. We introduce functions that describe how well such op-
timal protocols perform: Let rounds-bf(n, D, C) denote the minimal number
of rounds for binary feedback needed by any protocol to find a feasible solu-
tion for n channels, a demand D, and a network capacity C. Similarly, we define
rounds-tf(n, D, C) for throughput feedback. The functions waste-bf(n, D, C)
and waste-tf(n, D, C) tell us how much total waste any protocol must cause
before it finds a solution. Finally, we also introduce four sibling functions that
omit the third parameter C as in rounds-bf(n, D). For these functions the
total capacity C is not given to the protocol, but is known to be at least D.
Any protocol for this model can also be used in an alternative model where it
is not guaranteed that C ≥ D and the task is to either find a feasible solution
or determine that C < D. In this case one additional round may be required
to check whether the final solution produced by the protocol on the assumption
that C ≥ D is in fact feasible.

The problems and protocols presented in the present paper are “in the mid-
dle” between the protocols for optimally probing a single channel, studied for
example in [2, 4, 5], and the protocols for routing and congestion control in large
networks like the Internet, studied for example in [3], see [7] for a survey.
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1.2 Our Contribution

The only previous result related to our complexity measures is given in [1], where
it is shown that rounds-bf(n, D, D) ≤ log2 D + log2 n

2 . Our main results can
be summarized by the inequalities and the equality shown in Table 1. In all
cases, the lower bounds are established through adversary strategies. The upper
bounds are established by analyzing the performance of efficient protocols. In
the equations, and in the following, o(1) always refers to the parameter n.

Table 1. Summary of lower and upper bounds established in the present paper.

waste-tf(n, D) ≥
(
1 − o(1)

)
D ln n

ln ln n

waste-tf(n, D) ≤
(
1 + o(1)

)
D ln n

ln ln n

rounds-tf(n, D) ≥
(
1 − o(1)

)
lnn

ln ln n

rounds-tf(n, D) ≤
(
1 + o(1)

)
lnn

ln ln n

waste-bf(n, D, C) ≥
(
1 − o(1)

)
D ln n

ln ln n

waste-bf(n, D, C) ≤
(
2 + o(1)

)
D ln n

ln ln n

rounds-bf(n, D, D) ≥
(
1 − o(1)

)(
log2 D − log2 n

)
rounds-bf(n, D, D) ≤ log2 D +

(
1 + o(1)

)
ln n

ln ln n

rounds-bf(n, D, C) ≥
(
1 − o(1)

)(
log2

C
C−D+1

− log2 n
)

rounds-bf(n, D, C) ≤ log2
C

C−D+1
+
(
1 + o(1)

)
log2 n

rounds-bf(2, D, D) = �log3 D	

1.3 Organization of This Paper

In Section 2 we introduce notions that are common to the analysis of all vari-
ants of the problem. Section 3 presents a key protocol that is useful both in the
case of binary feedback and in the case of throughput feedback. Section 4 treats
throughput feedback, and we establish matching upper and lower bounds, simul-
taneously for the minimal number of rounds and the minimal waste. In Section 5
we study binary feedback. There, we treat waste and rounds separately and pay
special attention to the case of two channels.

2 Basic Protocol Analysis Tools

In this section we introduce basic ideas and terminology that will be used in all
of our analyses.

2.1 Maintaining the Pinning Box

For any protocol, at any point during a run of the protocol we will have gathered
certain information about the (unknown) capacities of the channels. For each
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channel i, from the answers to the previous t queries we will have deduced an
upper bound hi(t) and a lower bound li(t) for the channel capacity ci. Thus
ci ∈ [li(t), hi(t)], called the pinning interval. The cross product of the pinning
intervals will be called the pinning box. If, at any point, li(t) = hi(t), we obviously
know ci. At the beginning of a run, we know the trivial bounds li(0) = 0 and
hi(0) =∞. A better upper bound is given by hi(0) = C, but we may not know C.
The sum of the li(t) at time t will be denoted L(t). Similarly, the sum of the
hi(t) will be denoted H(t).

We query a vector q(t) =
(
q1(t), . . . , qn(t)

)
at time step t. The feedback

f(t) =
(
f1(t), . . . , fn(t)

)
may allow us to improve some or perhaps even all of our

pinning intervals. For binary feedback, we can perform the following updating:
if fi(t) = failure, set hi(t) = min{hi(t − 1), �qi(t)� − 1}; if fi(t) = success, set
li(t) = max{li(t−1), �qi(t)�}. Note that transmitting more than the upper bound
makes little sense, but transmitting less than the lower bound can be useful: the
demand “saved” by not transmitting it on a certain channel might be used to
probe the capacity of other channels more quickly. For throughput feedback, we
can always set li(t) = max{li(t − 1), fi(t)}; and if fi(t) < qi(t), we even know
li(t) = hi(t) = fi(t) = ci.

2.2 Effects of Increasing the Capacity

In certain situations an increase in the total capacity C affects the number of
rounds or the waste needed to find a solution. Intuitively, a bigger capacity C
should make it easier to find a solution—or at least not harder. However, a
protocol that works fine for a capacity of, say, C = D might try to exploit this
fact to its advantage. For example for n = 2 and C = D, if we know l1 = 3

4D,
then we can conclude that the capacity on the second channel can be at most
1
4D, but we cannot conclude this if we only know C ≥ D. Nevertheless, the
following theorem shows that our first intuition is correct in the case of binary
feedback.

Theorem 2.1. Let D ≤ C ≤ C′. Then

rounds-bf(n, D, C) ≥ rounds-bf(n, D, C′),
waste-bf(n, D, C) ≥ waste-bf(n, D, C′).

The first inequality is proper in many cases. For example, later on we will see
that rounds-bf(n, D, D) = Θ(log D) while rounds-bf(n, D, 2D) = Θ(1) for
fixed n.

Proof (of Theorem 2.1). Let P be a protocol that minimizes the number of
rounds for n channels, a demand D, and a guaranteed capacity of C. We give a
protocol P ′ that will need at most as many rounds as P and will work for any
capacity C′ ≥ C. It does not even need to know C′.
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Protocol P ′.
1 in round t← 1, 2, 3, . . . do
2 let q(t) be the query vector that protocol P would pose in round t

if it had seen the same results to our previous queries as we
have seen

3 query q(t) and compute the new li(t) and hi(t)
4 let B :=

{
(c1, . . . , cn) | li(t) ≤ ci ≤ hi(t),

∑n
i=1 ci = C

}
5 let (m1, . . . , mn) :=

(
min(c1,...,cn)∈B c1, . . . ,min(c1,...,cn)∈B cn

)
6 if

∑n
i=1 mi ≥ D then

7 output some (d1, . . . , dn) with
∑n

i=1 di = D and li(t) ≤ di ≤ mi

8 stop

In essence, for an unknown capacity vector c′ = (c′1, . . . , c
′
n) summing up

to C′, Protocol P ′ runs Protocol P , “pretending” that the capacity is C. It
interrupts the simulation once it has found a vector m = (m1, . . . , mn) that
sums up to at least D and that, in a certain sense, lies “beneath” all vectors
summing up to C inside the pinning box.

Our first claim is that the output of the protocol is, indeed, a solution. There
exists a vector c ∈ B that is componentwise below the real capacity vector c′.
It can be obtained, for example, by successively dropping the components of c′

to their established lower bounds until we can drop some components exactly
as much as is needed to make the resulting vector c sum up to C. Then c ∈ B.
Since c ∈ B, the vector m will be componentwise below c. Since the output is
componentwise below m in turn, we conclude that the output is componentwise
below the capacity vector c′ and is hence a solution.

Our second claim is that Protocol P ′ runs for at most rounds-bf(n, D, C)
rounds. Consider the situation the protocol faces at round rounds-bf(n, D, C).
The crucial observation at this point is that all elements of the set B produce the
exact same answers to all the queries that Protocol P ′ (and hence also P ) has
posed until now. Since Protocol P always finishes within rounds-bf(n, D, C)
rounds, it must be able to output a solution that is componentwise less than or
equal to every element of B. But such a solution must necessarily be compo-
nentwise less than or equal to m, which must thus sum up to at least D. Thus∑n

i=1 mi ≥ D.
For the claim waste-bf(n, D, C) ≥ waste-bf(n, D, C′) just note that Pro-

tocol P ′ also wastes at most as much as Protocol P does. ��

Corollary 2.2. For all n and D we have

rounds-bf(n, D, D) = rounds-bf(n, D)
waste-bf(n, D, D) = waste-bf(n, D).

Proof. Having more information can never hurt us, which means

rounds-bf(n, D, D) ≤ rounds-bf(n, D),
waste-bf(n, D, D) ≤ waste-bf(n, D).
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On the other hand, we just saw that an optimal protocol for C = D can be made
to work for all C ≥ D. ��

For throughput feedback, the situation is simpler.

Theorem 2.3. For all C ≥ D we have

rounds-tf(n, D, C) = rounds-tf(n, D),
waste-tf(n, D, C) = waste-tf(n, D).

Proof. As in the proof of Theorem 2.1, we take a protocol P that minimizes
the number of rounds or the waste when C and D are given and construct a
protocol P ′ that simulates this protocol given D but not C and stops when the
sum of the lower bounds is at least D. Observe that until this happens, there
always exists a capacity vector with sum less than D that produces the exact
same feedback as the one we have seen. Furthermore, for this capacity vector,
at least one channel will not yet have been bounded from above. This is true
because, in the case of throughput feedback, once a channel is bounded from
above, its capacity is determined and its lower bound is equal to that capacity.
Thus, if all channels were bounded from above, the sum of the lower bounds
would be C, which is greater than or equal to D. Thus, as long as the sum of
the lower bounds is less than or equal to D, we can find a vector summing up
to any value C > D that produces the exact same feedback as we have seen. ��

3 A Key Protocol

In this section we present a key protocol that is useful both in the case of binary
feedback and in the case of throughput feedback. It is well defined in both cases
but plays different roles. In the case of throughput feedback it is a complete
protocol, and its analysis yields tight upper bounds on rounds-tf(n, D) and
waste-tf(n, D). In the case of binary feedback it is not a complete protocol,
but serves as the first stage of a complete protocol that gives our best upper
bound on waste-bf(n, D, C).

The key protocol seeks to bound from above as many channels as possible
as quickly as possible. A channel is said to be bounded if some query on that
channel has exceeded its capacity. For throughput feedback the capacity of a
channel is determined as soon as it becomes bounded.

Protocol 3.1 (Key Protocol). In each round send 0 on each bounded channel
and divide a flow of D equally among the unbounded channels. Stop as soon as
L(t) is at least D or all channels have become bounded.

Note that in the case of binary feedback (and only in that case) Protocol 3.1
is not a complete protocol, that is, when it stops we may not yet have found a
feasible flow. The reason is that when the protocol stops because all channels
have become bounded but L(t) < D, there may not be enough information for
the protocol to produce a feasible flow of value D.
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Theorem 3.2. Let Protocol 3.1 stop after T0 rounds. Then, both for binary and
for throughput feedback, we have

T0 ≤
(
1 + o(1)

)
ln n

ln ln n .

If the protocol stops because it has bounded all channels from above, then H(T0) ≤
D
(
1 + o(1)

)
ln n

ln ln n for binary feedback and H(T0) = C for throughput feedback.

Proof. The key idea in proving the upper bound on the number T0 of rounds
until the protocol stops is to establish a tradeoff between the time needed to
bound all channels from above and the growth rate of L(t).

Consider a run of the protocol. We focus on rounds t = 1, . . . , T0 − 1. Let
g(0) = n and let g(t) denote the number of unbounded channels after round t.
Let α(t) := g(t)/g(t − 1) and let tmax ∈ {1, . . . , T0 − 1} be an index such that
α(tmax) ≥ α(t) for all t. In other words, in round tmax we see a maximal ratio of
still-unbounded channels to previously-unbounded channels. Our two interme-
diate goals are to obtain an upper bound on the arithmetic mean and a lower
bound on the geometric mean of the α(t) for t �= tmax. Applying the inequality
relating the arithmetic and geometric means will then yield the claim.

For our first goal, the upper bound on
∑

t�=tmax
α(t), we start with some

simple observations concerning the lower bounds on the capacities of the g(t)
channels that have not yet been bounded from above. After the first round, the
capacities of the g(1) unbounded channels will each be bounded from below by
D/g(0), which means L(1) ≥ α(1)D or, equivalently,

L(1)
D

≥ α(1).

Similarly, after round t ≥ 2 the lower bounds on the capacities of g(t) channels
increase from D/g(t−2) to D/g(t−1). Thus, L(t)−L(t−1) ≥ g(t)·

(
D/g(t−1)−

D/g(t− 2)
)

or, equivalently,

L(t)− L(t− 1)
D

≥ g(t)
g(t− 1)

− g(t)
g(t− 2)

= α(t)
(
1− α(t− 1)

)
.

Telescoping this inequality and then “reindexing around tmax” yields

L(T0 − 1)
D

≥ α(1) +
T0−1∑
t=2

α(t)
(
1− α(t− 1)

)
= α(tmax) +

tmax−1∑
t=1

α(t)
(
1− α(t + 1)

)
+

T0−1∑
t=tmax+1

α(t)
(
1− α(t− 1)

)
≥ α(tmax) +

(
1− α(tmax)

) ∑
t�=tmax

α(t). (1)
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Since all terms in (1) are nonnegative, we conclude L(T0 − 1)/D ≥ α(tmax).
We know that the protocol does not stop after query T0 − 1, so L(T0 − 1) < D
or, equivalently, 1 > L(T0 − 1)/D. We conclude that 0 < α(tmax) < 1 and using
(1) we get 1 − α(tmax) ≥ 1 − L(T0−1)

D >
(
1 − α(tmax)

)∑
t�=tmax

α(t). Then, by
dividing by the positive term 1 − α(tmax), we obtain an upper bound on the
arithmetic mean of the α(t): ∑

t�=tmax

α(t) < 1. (2)

For our second goal, a lower bound on
∏

t�=tmax
α(t), we once more start with

the observation that the protocol does not stop after query T0 − 1. This implies
g(T0 − 1) ≥ 1 since there is still an unbounded channel after round T0 − 1. We
can write g(T0 − 1) as n

∏T0−1
t=1 α(t), which yields

1
n
≤ g(T0 − 1)

n
=

T0−1∏
t=1

α(t) <
∏

t�=tmax

α(t). (3)

For our final sequence of inequalities, we first use the lower bound (3) on the
geometric mean, then the inequality

∏
xi

1/m ≤ 1
m

∑
xi that relates the arith-

metic and geometric means, and finally the upper bound (2) on the arithmetic
mean:

T0−2
√

1
n < T0−2

√ ∏
t�=tmax

α(t) ≤ 1
T0 − 2

∑
t�=tmax

α(t) <
1

T0 − 2
.

This inequality is equivalent to (T0 − 2)T0−2 < n, which in turn implies
T0 ≤

(
1 + o(1)

)
ln n

ln ln n .
It remains to show the upper bounds on H(T0) when the protocol stops

because it has bounded all channels. For throughput feedback, once every channel
has been bounded, we know the capacities of all channels and H(T0) = C. For
binary feedback, the key observation is that each channel is bounded from above
exactly once. Consider the channels that are bounded in round t. The number
of such channels is g(t− 1)− g(t). The protocol issues a query of D/g(t− 1) and
gets that value as an upper bound on their capacity. Thus, the upper bounds
established in round t sum up to at most

(
g(t− 1) − g(t)

)
D/g(t− 1) = D

(
1 −

g(t)/g(t−1)
)
≤ D. So in each round we get a contribution of at most D to H(T0)

and we have already shown that the number of rounds is at most
(
1+o(1)

)
lnn

ln ln n .
This yields the claim. ��

4 Throughput Feedback

In this section we establish matching upper and lower bounds on the number of
rounds and the waste needed to find a solution when we get throughput feedback.
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The results of this section can be summed up by the following inequalities from
Table 1: (

1− o(1)
)
D ln n

ln ln n ≤ waste-tf(n, D) ≤
(
1 + o(1)

)
D ln n

ln ln n ,(
1− o(1)

)
ln n

ln ln n ≤ rounds-tf(n, D) ≤
(
1 + o(1)

)
ln n

ln ln n .

4.1 Upper Bounds on Rounds and Waste for Throughput Feedback

Theorem 4.1. For all n and D we have

waste-tf(n, D) ≤ (1 + o(1))D ln n
ln ln n ,

rounds-tf(n, D) ≤ (1 + o(1)) ln n
ln ln n .

Proof. Theorem 3.2 states that if we run Protocol 3.1 for T0 ≤ (1 + o(1)) ln n
ln ln n

rounds, then either L(T0) ≥ D or H(T0) = C. In either case we can directly
specify a feasible flow. The upper bound on waste-tf(n, D) now follows from
the fact that the waste in each round is at most D. ��

4.2 Lower Bounds on Rounds and Waste for Throughput Feedback

Theorem 4.2. waste-tf(n, D) ≥
(
1− o(1)

)
D lnn

ln ln n .

Proof. Consider an optimal protocol. We describe an adversary strategy that
causes it to waste at least the amount stated in the theorem. The rough idea is
as follows: The adversary maintains a list of channels on which it has committed
itself. This list gets larger in each round, but the adversary tries to make it grow
as slowly as possible. A commitment occurs for channel i when the adversary
answers, for the first time in some round t, that a query qi(t) is larger than
the capacity ci. Once the adversary has committed itself on channel i, it will
answer all subsequent queries qi(t) with the feedback min{qi(t), ci}. However, if
the adversary has not yet committed itself on a channel, it is still free to choose
the capacity of the channel in any way it likes later on, as long as the capacity
is at least as large as the largest query asked on the channel.

In order to commit itself as slowly as possible, in each round t the adversary
analyzes the queries. For the channels on which it has already committed itself
it simply answers min{qi(t), ci}, where ci is its previous commitment. For the
channels on which it has not yet committed itself, it sorts the queries according
to their value and then commits itself on the r(t) largest ones to a certain value
z(t). Committing itself on the largest channels ensures that the only good strat-
egy against the adversary is to evenly distribute the demand on the channels on
which the adversary has not yet committed itself. Any strategy that poses small
queries for certain uncommitted channels and large queries on other uncommit-
ted channels will cause the adversary to answer, essentially, “the small queries
succeed and cause a lot of waste since they are too small, and the large ones fail
and cause a lot of waste since they are too high.”
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The two key parameters of the adversary’s strategy are the number r(t) of
channels on which it commits itself in round t and the value z(t) to which it
newly commits itself. These parameters are chosen as follows:

r(t) :=
⌈
αt−1n

⌉
−
⌈
αtn

⌉
for t ∈ {1, . . . , T},

z(t) :=
D

(1 − α)αt−2n
for t ∈ {2, . . . , T},

where α := 1/ lnn and T :=
⌈

ln n
ln ln n

⌉
. Special cases occur in the first round and

round T + 1. In the first round z(1) := 0. In round T + 1, we set r(T + 1) := 1
and the adversary chooses z(T + 1) in any way that ensures that the capacities
add up to C = D. Note that the choice of α and T ensures αt−1n > 1 for t ≤ T
and αT n ≤ 1.

We must now show the following:

1. During the first T rounds the answers of the adversary are consistent. This
means that there exists a capacity vector, summing up to C = D, for which
exactly the same answers to the queries would be given as the ones that the
adversary gave.

2. During the first T rounds, we have L(t) < D. In particular, no way has yet
been found to distribute the whole flow D.

3. The total waste is
(
1− o(1)

)
D ln n

ln ln n .

The first claim follows directly from the commitment rule. To prove the second
claim, consider the total capacity of the channels on which the adversary newly
commits itself in round t. This capacity is given by the product r(t)z(t), which
can be bounded as follows for t ≤ T :

r(t)z(t) ≤
⌈
αt−1n

⌉
− �αtn�

(1 − α)αt−2n
D ≤ 1 + αt−1n− αtn

(1− α)αt−1n
αD

=
1 + (1− α)αt−1n

(1 − α)αt−1n︸ ︷︷ ︸
≤3

αD ≤ 3αD. (4)

To see that the fraction is, indeed, less than or equal to 3 for large n, recall
that αt−1n > 1. This shows that the fraction is bounded from above by 1+ 1

1−α ,
and since α ≤ 1/2 for n ≥ 4, it follows that 1 + 1

1−α ≤ 3 for n ≥ 4.
Consider the lower bounds established in round T . The number of uncom-

mitted channels after round T is �αT n�, which is equal to 1 since 0 < αT n ≤ 1.
On the one uncommitted channel, the lower bound will be at most z(T ) since
we have never had a query above this on this channel. This allows us to bound
L(T ) as follows, which proves the second claim:

L(T ) < z(T ) +
T∑

t=1

r(t)z(t) ≤ αD

1− α
+ 3αTD = o(D).
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For the third claim, we must establish a lower bound on the waste. For this,
first consider the throughput P (t) in round t. It is at most

P (t) ≤ g(t)z(t) + r(t)z(t) + · · ·+ r(1)z(1), (5)

where g(t) = �αtn� is the number of uncommitted channels in round t. Here
g(t)z(t) is the sum of the lower bounds for the uncommitted channels and each
term r(i)z(i) is the sum of the lower bounds for the channels that became com-
mitted in round i. We know already, from (4), that we can upper bound each
r(i)z(i) by 3αD (and we also know z(1) = 0). A bound on g(t)z(t) can be
obtained as follows:

g(t)z(t) =
⌈
αtn

⌉ D

(1− α)αt−2n
≤ 1 + αtn

(1− α)αt−2n
D =

1 + ααt−1n

(1− α)αt−1n︸ ︷︷ ︸
≤3

αD ≤ 3αD.

To see that the bound of 3 on the large fraction is, indeed, correct, compare the
fraction to the corresponding fraction in (4) and note that α ≤ 1− α.

The final step is to bound the total waste. Applying the bounds on r(i)z(i)
and g(t)z(t) to inequality (5) yields P (t) ≤ 3tαD. This implies that the total
waste is at least

T−1∑
t=1

(
D − P (t)

)
≥ (T − 1)D − 3

(
T
2

)
αD =

(
1−O(Tα)

)
TD. (6)

Using αT = 1
ln ln n + o(1), the theorem follows. ��

Once more, by observing that in any round we can waste at most D, we get
a corollary.

Corollary 4.3. rounds-tf(n, D) ≥
(
1− o(1)

)
ln n

ln ln n .

5 Binary Feedback

The waste function waste-bf(n, D, C) for binary feedback behaves similarly
to the waste function for throughput feedback and almost the same bounds
are established below. Opposed to this, rounds-bf(n, D, C) behaves somewhat
differently from the corresponding function for throughput feedback. We show
that for binary feedback the number of rounds does not only depend on n and D,
but also on C. Our upper and lower bounds for rounds-bf(n, D, C) do not quite
match for general n, but we solve the special case of two channels completely:
rounds-bf(2, D, D) = �log3 D�.

5.1 Minimizing Waste for Binary Feedback

Recall that the waste caused by an optimal protocol for throughput feedback
is Θ(D ln n

ln ln n ). Our analysis gave even more precise bounds: The ratio between
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rounds-tf(n, D, C) and D ln n
ln ln n approaches 1 as n tends to infinity. For binary

feedback we establish the same Θ-bound as for throughput feedback, but the
exact upper and lower bounds do not match as tightly:(

1− o(1)
)
D ln n

ln ln n ≤ waste-bf(n, D, C) ≤
(
2 + o(1)

)
D ln n

ln ln n .

The lower bound follows from Theorem 4.2. To prove the upper bound, we
consider a protocol that begins by executing Protocol 3.1, which terminates
when L(t) ≥ D or all channels have become bounded. In the former case, one
can immediately specify a feasible flow of value D, but in the latter case, because
binary feedback is weaker than throughput feedback, Protocol 3.1 may leave us
with some pinning box. We use a second protocol to reduce the sum of all the
pinning interval gaps to zero.

Intriguingly, this second protocol is the proportional allocation protocol, which
was originally introduced in [1] in the context of round minimization. Our anal-
ysis shows that this protocol reduces the sum of the pinning intervals to zero
without wasting more than this sum. The idea of the proportional allocation
protocol is, at each step, to choose queries summing to D that split all the pin-
ning intervals in the same proportions: for each round t and each channel i,
qi(t)− li(t− 1) = ρ(t) ·

(
hi(t− 1)− li(t− 1)

)
, where ρ(t) is chosen to make the

sum of the queries equal to D.

Protocol 5.1 (Proportional Allocation, [1]). Assume that some protocol
has been used during rounds t = 1, 2, 3, . . . , T0 to establish (possibly nonoptimal)
pinning intervals [li(T0), hi(T0)] for some or for all channels i. If no bounds have
yet been established for some channel i, let li(T0) = 0 and hi(T0) =∞.

1 foreach i ∈ {1, . . . , n}
2 hi(T0)← min{hi(T0), D}
3 in round t← T0 + 1, T0 + 2, T0 + 3, . . . do

4 ρ(t)← D−L(t−1)
H(t−1)−L(t−1)

5 foreach i ∈ {1, . . . , n} do
6 qi(t)← li(t− 1) + ρ(t) ·

(
hi(t− 1)− li(t− 1)

)
7 query

(
q1(t), . . . , qn(t)

)
8 if H(t) = C or L(t) = D then output last query vector; stop

Theorem 5.2. Let Protocol 5.1 be started in round T0 + 1 with a certain pin-
ning box already established. Then it will find a solution wasting no more than
H(T0)− L(T0).

Proof. Let Δ(t) := H(t)−L(t) denote the sum of the pinning interval gaps. Our
aim is to show the following claim: If the protocol wastes W (t) in round t, we
have Δ(t+1) ≤ Δ(t)−W (t). In other words, we reduce the pinning interval gap
by at least the amount we waste. If this claim holds, we clearly cannot waste
more than Δ(T0) before the gap drops to C −D ≥ 0.

In each round t we distinguish two cases, depending on whether ρ(t) ≤ 1/2
or ρ(t) > 1/2 for this round. For the case ρ(t) ≤ 1/2, consider the values wi(t) :=
max{0, qi(t)− ci}. We claim W (t) =

∑n
i=1 wi(t). This can be seen as follows:
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W (t) = D −
n∑

i=1

min{ci, qi(t)}

= D −
n∑

i=1

(
qi(t)−max{0, qi(t)− ci}

)
=

n∑
i=1

wi(t).

We used the fact that Protocol 5.1 always distributes the complete demand D,
that is,

∑n
i=1 qi(t) = D. Consider a channel i with wi(t) > 0 and thus qi(t) > ci.

Since the query was a failure, the upper bound hi(t) will be decreased to qi(t).
Thus the pinning interval changes from [li(t−1), hi(t−1)] to [li(t−1), qi(t)] and its
size changes from hi(t−1)−li(t−1) to qi(t)−li(t−1) = ρ(t)·

(
hi(t−1)−li(t−1)

)
.

Thus, channel i causes the gap Δ to shrink by at least
(
1 − ρ(t)

)(
hi(t − 1) −

li(t−1)
)

while it causes a waste of at most wi(t) = qi(t)− ci ≤ qi(t)− li(t−1) =
ρ(t) ·

(
hi(t − 1) − li(t − 1)

)
. Since this argument is true for all channels, we

conclude that W (t) is at most the decrease of the pinning interval gaps.
For the case ρ(t) > 1/2, we argue similarly, but consider the values w′

i(t) :=
max{0, ci − qi(t)}. The sum of these values is an upper bound on the waste:

W (t) = D −
n∑

i=1

min{ci, qi(t)}

= D −
n∑

i=1

(
ci −max{0, ci − qi(t)}

)
= D − C +

n∑
i=1

w′
i(t) ≤

n∑
i=1

w′
i(t).

It remains to argue that on each channel we decrease the size of the pinning
interval by at least w′

i(t). Suppose w′
i(t) > 0. Then ci > qi(t) and the pinning

interval changes from [li(t−1), hi(t−1)] to [qi(t), hi(t−1)]. Its size changes from
hi(t − 1) − li(t − 1) to hi(t − 1) − qi(t) =

(
1 − ρ(t)

)(
hi(t − 1) − li(t − 1)

)
and

thus its size is reduced by at least ρ(t) ·
(
hi(t − 1) − li(t − 1)

)
. Since w′

i(t) =
ci−qi(t) ≤ hi(t−1)−qi(t) =

(
1−ρ(t)

)(
hi(t−1)− li(t−1)

)
and since ρ(t) > 1/2,

we conclude that the reduction of the interval size is larger than the waste. ��

Note that, if we omitted Protocol 3.1 and only used Protocol 5.1 starting
with T0 = 0, then we would have H(0) = nD, L(0) = 0, and the theorem would
merely guarantee an upper bound on waste of nD. By using Protocol 3.1 followed
by Protocol 5.1 we obtain a much better bound.

Theorem 5.3. waste-bf(n, D, C) ≤
(
2 + o(1)

)
D ln n

ln ln n .

Proof. We run Protocol 3.1 for T0 rounds until it stops, and then start using
Protocol 5.1 from round T0 + 1 on. Theorem 3.2 tells us that Protocol 3.1 ter-
minates within at most

(
1 + o(1)

)
ln n

ln ln n rounds. During each round at most D

can be wasted, which yields to a total waste of at most
(
1+ o(1)

)
D ln n

ln ln n during
the execution of Protocol 3.1. Theorem 3.2 also tells us that after the execution
of Protocol 3.1 we are left with upper bounds H(T0) ≤

(
1 + o(1)

)
D ln n

ln ln n . Thus,
when Protocol 5.1 starts in round T0 + 1, the size of the pinning box is at most
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H(T0) − L(T0) ≤ H(T0) ≤
(
1 + o(1)

)
D ln n

ln ln n . By Theorem 5.2, during the exe-
cution of Protocol 5.1 we waste at most the size of the pinning box, which yields
the claim. ��

5.2 Minimizing Rounds for Binary Feedback

For waste it makes little difference what kind of feedback is used: using binary
feedback at most doubles the waste. The situation is quite different for rounds.
For throughput feedback the optimal number of rounds ln n

ln ln n does not depend
on either D or C. For binary feedback the optimal number of rounds depends
both on D and on C. In particular, an increased total capacity C allows us to
find solutions more quickly. In detail, we show the following:

rounds-bf(n, D, C) ≥
(
1− o(1)

) (
log2

C
C−D+1 − log2 n

)
,

rounds-bf(n, D, C) ≤ log2
C

C−D+1 +
(
1 + o(1)

)
log2 n.

It is proven in [1] that Protocol 5.1 started with a certain pinning box already
established in round T0 will find a solution within log4

(
H(T0)−D

)(
D−L(T0)

)
additional rounds. Chandrayana et al. infer from this, using the initial bounds
hi(0) = D and li(0) = 0, that Protocol 5.1 will find a solution within log2 D +
log2 n

2 rounds. Using the same protocol composition trick as for Theorem 5.3,
this bound can be improved as follows:

Theorem 5.4. rounds-bf(n, D, D) ≤ log2 D +
(
1 + o(1)

)
lnn

ln ln n .

Proof. We run Protocol 3.1 followed by Protocol 5.1. By Theorem 3.2, when
the proportional allocation protocol starts in round T0, we have H(T0) ≤

(
1 +

o(1)
)
D ln n

ln ln n , which implies
(
H(T0)−D

)(
D−L(T0)

)
≤
(
1+o(1)

)
D2 ln n

ln ln n . Thus
the number of rounds for the second protocol will be at most

log4

((
1 + o(1)

)
D2 lnn

ln ln n

)
= log2 D + o(ln lnn).

Since Protocol 3.1 requires only
(
1 + o(1)

)
lnn

ln ln n rounds, we get the claim. ��

Chandrayana et al. prove a lower bound that matches this upper bound in
the sense that they show rounds-bf(n, D, D) = Θ(log2 D) for fixed n. However,
the protocol is far from optimal if C is larger than D and if we know this. For
example, rounds-bf(2, D, 2D) = 2 for all D since (D, 0) or (0, D) is always a
solution.

We present a modification of Protocol 5.1 that finds a solution in a number
of rounds that depends on n and ε but not on D, if we know C ≥ (1 + ε)D.

Protocol 5.5 (Scaled Proportional Allocation).
Let Δ := �(C −D)/n�+ 1 and let D′ := �D/Δ�. Scaled proportional allocation
simulates Protocol 5.1 from round T0 + 1 onward, but
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1. we try to distribute a demand of D′ instead of D and
2. whenever proportional allocation wishes to query

(
q′1(t), . . . , q

′
n(t)

)
we query

the vector
(
Δq′1(t), . . . , Δq′n(t)

)
instead.

Theorem 5.6. rounds-bf(n, D, C) ≤ log2
C

C−D+1 +
(
1 + o(1)

)
log2 n.

Proof. We first run Protocol 3.1 (without any scaling) for T0 rounds to establish
an initial pinning box. Now consider the actual capacities (c1, . . . , cn) and let
c′i := �ci/Δ�. A run of Protocol 5.5 will produce the same queries as running the
original Protocol 5.1 for the capacity vector (c′1, . . . , c′n) and for the demand D′:
we have Δq′i(t) ≤ ci if and only if Δq′i(t) ≤ Δ �ci/Δ�, which is in turn equivalent
to q′i(t) ≤ �ci/Δ�. Thus a query Δq′i(t) will be answered with success in Proto-
col 5.5 if and only if the query q′i(t) is answered the same way in Protocol 5.1
for the scaled capacities and the scaled demand.

There exists a solution with respect to the capacities (c′1, . . . , c′n) and the
demand D′ since

n∑
i=1

c′i =
n∑

i=1

⌊ ci

Δ

⌋
≥

n∑
i=1

ci −Δ + 1
Δ

=
C − nΔ + n

Δ
=

D

Δ
.

The left-hand side is an integer and we even have
∑n

i=1 c′i ≥ �D/Δ� = D′.
So far, we have shown that Protocol 3.1 followed by 5.5 will need as much

time to find a solution as Protocol 3.1 followed by 5.1 will need for the scaled
capacity vector and the scaled demand. Thus we can apply Theorem 5.4 with D
replaced by D′. The interesting term log2 D′ can be bounded as follows:

log2 D′ = log2

⌈
D

�(C −D)/n�+ 1

⌉
= log2

⌈
nD

n �(C −D)/n + 1�

⌉
≤ log2

⌈
nD

C −D + 1

⌉
≤ log2

C

C −D + 1
+ log2 n.

This proves the theorem. ��

Theorem 5.7. rounds-bf(n, D, C) ≥
(
1− o(1)

)(
log2

C
C−D+1 − log2 n

)
.

Proof. We present an adversary strategy against an optimal protocol for given
numbers n, D, and C. The adversary keeps track of a set X of capacity vectors
summing up to C that are consistent with all the answers the adversary has
provided until now. Initially, X contains all vectors of nonnegative integers sum-
ming up to C and thus has size

(
C+n−1

n−1

)
. When the protocol produces a query

vector, the 2n possible answer vectors partition X into 2n sets whose elements
are consistent with one answer vector. At least one of these sets has size at least
|X |/2n and the adversary returns the answer vector corresponding to this set.

We claim that the protocol cannot produce its final output before |X | has
dropped to

(
C−D+n−1

n−1

)
. To see this, note that every vector summing up to D is

componentwise below at most
(
C−D+n−1

n−1

)
many vectors in X . We conclude that
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the number T of rounds needed by the optimal protocol to produce its solution
must satisfy

(
C+n−1

n−1

) /
(2n)T ≤

(
C−D+n−1

n−1

)
and thus

T ≥ 1
n

log2

(
C+n−1

n−1

)(
C−D+n−1

n−1

)
≥ n− 1

n
log2

C + n− 1
C −D + n− 1

≥ n− 1
n

log2

C

n(C −D + 1)
.

The last term equals
(
1− o(1)

)(
log2

C
C−D+1 − log2 n

)
, which proves the claim.

��

5.3 Minimizing Rounds for Two Channels with Binary Feedback

The upper and lower bounds proved in the previous section do not quite match:
the upper bound contains a positive log2 n term, the lower bound a negative
log2 n term. A first step toward closing this gap is the following optimal protocol
for n = 2. The performance of this protocol was surprising to us since even a
binary search needs log2 D rounds to find a solution:

Protocol 5.8 (Two Channel Protocol).

1 l ← 0, h← D
2 in round t← 1, 2, 3, . . . do
3 q1(t)← (h− l)/3 + l
4 q2(t)← (h− l)/3 + D − h
5 query

(
q1(t), q2(t)

)
receiving

(
f1(t), f2(t)

)
6 if H(t) = D or L(t) = D then output last query vector; stop
7 if f1(t) = failure then h← q1(t) else l ← q1(t)
8 if f2(t) = failure then l ← max{l, D− q2(t)}
9 else h← min{h, D − q2(t)}

Theorem 5.9. rounds-bf(2, D) = �log3 D�.

Proof. By Corollary 2.2 it suffices to show rounds-bf(2, D, D) = log3 D. We
begin with an adversary strategy that ensures that any fixed protocol can-
not find the solution in less than log3 D rounds. This will show the inequality
rounds-bf(2, D, D) ≥ log3 D.

The aim of the adversary is to keep the protocol in the dark about the ca-
pacity c1. The adversary keeps track of a pinning interval [l, h] that gets smaller
in each round. In any round t, the answers of the adversary up to then will be
consistent with every capacity vector (c1, c2) with c1 ∈ [l, h] and c2 = D − c1.
Initially, l = 0 and h = D, which clearly fulfills the requirements. In round t,
consider a query vector q(t) =

(
q1(t), q2(t)

)
and consider where the two numbers

q1(t) and D − q2(t) lie in the interval [l, h]. They can split the interval into at
most three intervals and at least one of them must have size at least (h− l)/3.
The adversary answers such that any value within this largest interval is per-
missible. For simplicity, assume l ≤ q1(t) ≤ D − q2(t) ≤ h—other cases are
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similar. Then, in detail, if the largest interval is [l, q1(t)], the adversary answers
(failure , success). If the largest interval is [q1(t), D−q2(t)], the adversary answers
(success , success). If the largest interval is [D − q2(t), h], the adversary answers
(success , failure). In each round, the size of the interval is reduced by a factor of
at most 3. Thus, the adversary does not have to settle on a capacity distribution
before log3 D rounds have passed.

To prove the inequality rounds-bf(2, D, D) ≤ log3 D, consider Protocol 5.8.
It implements a strategy against the just-given adversary by keeping track of the
interval [l, h] for which it knows c1 ∈ [l, h] and thus c2 ∈ [D − h, D − l]. In each
round it poses two queries

(
q1(t), q2(t)

)
such that q1(t) and D − q2(t) cut the

interval into three equal parts. For every possible answer vector
(
f1(t), f2(t)

)
the

interval size will be reduced by a factor of 3, which proves the claim. ��

6 Conclusion and Open Problems

We proposed a framework for studying different ways of distributing a flow in
a simple network with unknown capacities. We studied two kinds of feedback,
namely binary and throughput feedback. For the latter type of feedback we pre-
sented a protocol that is optimal both with respect to the number of rounds and
the waste produced. For binary feedback there is still a gap between the upper
and lower bounds when the number n of channels is also taken into account. The
main open problem of this paper is closing this gap. For the special case of two
channels we establish an optimal protocol and note that it outperforms binary
search.

Experimental work done by Chandrayana et al. [1] has shown that the (un-
scaled) proportional allocation protocol performs well on real data with respect
to the number of rounds needed. Our theoretical work backs these findings, but
we showed that scaling can significantly improve the performance of the protocol
if the available capacity is larger than the demand. This opens the intriguing
possibility that the scaled proportional allocation protocol might be an optimal
protocol for minimizing both rounds and waste.

We did not address the computational complexity of protocols within our
models. However, reviewing the protocols that we used for upper bounds, we see
that they are both easy to implement and have low computational complexity.

For further research we suggest studying dynamic versions of the problem, in
which the capacities may change from round to round, either under deterministic
constraints or under a stochastic fluctuation model. For the case n = 1, some
results in the framework of competitive analysis of on-line algorithms are given in
[5]. For general n no theoretical results are available, but Chandrayana et al. [1]
have proposed n-channel protocols for the dynamic case that perform well in
practice.

We also suggest studying optimal protocols for a different throughput model:
let the throughput on channel i be qi(t) if qi(t) ≤ ci, and 0 otherwise. This model
is suggested by Internet congestion control protocols in which, whenever a packet
is dropped in a round, it cannot be guaranteed that any packets are delivered.
For the case n = 1, this model is studied in [5].
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Abstract. This paper proposes a new metric that aims to express the
cost of manufacturing large-scale, communication-intensive digital sys-
tems. These systems are modeled by networks with internal and exter-
nal edges, where the latter are input/output edges connecting the system
with the external world. A k–parceling of such a network is a partition of
the network into components each having at most k non-internal edges.
(Such a partition is of interest when the number of the external edges is
much larger than k.) The k–parceling number of a network is the minimal
number of components in a k–parceling.

We argue that the parceling number of a large-scale, communication-
intensive network expresses the cost of such a system better than the
contemporary prevalent metrics and therefore it can guide the designers
of such systems better than these metrics.

The paper studies the parceling of two important networks, the Butterfly
and the Batcher Bitonic sorting network. It establishes explicit (rather
than asymptotic) lower and upper bounds on the parceling number of
both networks.

1 Introduction

In the theoretical study of digital systems (i.e., digital networks), three metrics
are used to express the cost of manufacturing these systems: the size of the net-
work and the minimal area or volume of a layout of the network in Thompson’s
2-D or 3-D grid models1 [T79, T80, L85, LR86]. The major aim of these metrics
is to help the designers of digital systems evaluate the pros and cons of the many
design alternatives so that they can focus on the most promising ones.

We argue that all these metrics poorly express the cost of large-scale, comm-
unication-intensive systems, and therefore provide little help to the designers of
such systems.

0 This work was supported in part by BSF Grant No. 94-266.
1 In these models, the nodes of the network are embedded in distinct points of a two or

three dimensional finite grid and the arcs of the network are realized by edge-disjoint
paths of the grid. The area or volume of the layout is the total number of points of
this grid.

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 129–142, 2006.
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The first metric—the network size—plainly ignores the cost of the intercon-
nection.

The second metric—the area—is useful only for small systems since large
ones are invariably built in 3-D. Advocates of this metric argue that the large
systems of today will be small systems tomorrow, but this is irrelevant; we need
today to build the large systems of today, and we will need tomorrow to build
the large systems of tomorrow.

The third metric—the volume—is inadequate since it ignores the cardinal en-
gineering issues of the spatial partitioning of the system into physical subsystems
and the packaging of these subsystems.

In contemporary packaging technology [B90, BMM78] the following hierarchy
of package types are used: chip, Multi-Chip Module, Printed Circuit Board,
box and cabinet. (Some levels of the hierarchy may be absent in any given
system.) The volume metric is not only inadequate for contemporary packaging
technology but seems inadequate for future ones as well since it ignores the
following issues:

– Packages, wiring and cooling are expensive; volume is essentially free. (Note
that this is not the case with the area metric; silicon area is expensive even
if not used.)

– There is a great variation in the density of wires across the packaging hierar-
chy. In contemporary technology there is a gap of three orders of magnitude
between the density of intra-chip wires and inter-cabinet ones.

– There is a level of the packaging hierarchy that serves for Field Replaceable
Units (FRUs). It is mandatory that a failed FRU can be replaced without
taking apart the entire system, but this is routinely violated by 3-D grid
layouts.

– It is desirable that the system is made of few different types of modules,
especially when these modules are fabricated by mass production techniques.

To summarize, the 3-D grid model is an abstraction that is very detached from
the systems it aims to model; it is valid only for showing that some design
alternatives are very bad, but not for showing that some alternatives are good.

We propose a new cost metric for large-scale, communication-intensive digital
systems. The metric focuses on packaging and is based on the assumption that
the input/output capability of the packages, rather than their internal capacity,
is the dominant factor in the packaging of the system. Hence, the metric models
the case where all the packages have unbounded internal capacity and the same
limited input/output capability while the goal is to minimize the number of
packages.

Assume that the input/output capability of the packages is k; i.e., a package
is connected to the rest of the system (and to the external world) by k wires2 and
each wire implements a single edge of the network. This gives rise to the concept
of a k–parceling of a network – a partition of the network into components such
2 In contemporary packaging technology [B90, BMM78], a VLSI chip is connected to

the rest of the system by a few hundred wires.
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that each component is connected to the rest of the system (and the external
world) by at most k edges. (Such a partition is of interest when the number of
external edges of the network is much larger than k.) The k–parceling number
of a network N , denoted P(N, k), is the minimal number of components in a
k–parceling.

In addition to being relevant to the engineering of large digital systems, the
parceling metric has two significant advantages over the volume metric. Firstly,
an optimal parceling of the network readily provides the designer with a top-level
physical partitioning of the system. Secondly, although the parceling number
does not reflect the issue of modularity – the desire to have a few different
types of subsystems – the subsystems themselves are explicit in the parceling
model while being absent in the 3-D grid model. Hence, the modularity of the
composition can be addressed within the same parceling model.

The proposed metric has its own weaknesses, the major one of which is
ignoring the intra-package wiring. The metric should be used as a first-order
approximation of the system cost, and should be applied recursively within the
packaging hierarchy.

Notable examples of communication-intensive subsystems are interconnec-
tion networks like the Butterfly and sorting networks like the Bitonic one.

In spite of the great theoretical breakthrough of the AKS sorting network
[AKS83], the best practical networks are still the Batcher sorting networks in-
vented in the 60’s. Batcher [B68] has presented two sorting networks, the Odd-
Even sorting network and the Bitonic sorting network. The depth of both net-
works is 1

2 log(n)(log(n) + 1), where n is the number of inputs and is assumed
henceforth to be a power of two. The former network has somewhat fewer nodes
than the latter one; however, the latter network is more regular and there-
fore is preferred by designers of sorting and switching systems [HK84, WE85,
GHMSL91]. Hence, of these two sorting networks, only the Bitonic one is studied
in this paper.

Let Bn and Sn denote the Butterfly and the Bitonic sorting network, re-
spectively, both with n external input edges. Let |N | denote the size (number
of nodes) of a network N . For our networks of interest, |Bn| = 1

2n log(n) and
|Sn| = 1

4n log(n)(log(n)+1). The paper establishes the following explicit (rather
than asymptotic) upper and lower bounds on the parceling of these networks for
any 1 < k < n, both powers of 2:

α(k)|Bn|/|Bk| ≤ P(Bn, 2k) ≤ |Bn|/|Bk|+ n/k

and
β(min(k, n/k))(|Sn| − 4|Sk/4|n/k)/|Bk| ≤ P(Sn, 2k)

≤ (|Sn| − 4|Sk/4|n/k)/|Bk|.

The functions α, β : N → R of the lower bounds are defined in Section 4 and
satisfy limi→∞ α(i) = limi→∞ β(i) = 1 and, for all i, 1

2 ≤ α(i) and 1
8 ≤ β(i).

No lower bounds on the parceling number of these networks were previously
known. The above upper bound of the Butterfly is well-known. Our upper bound
of the Bitonic sorting network is new and is lower (by about 1

2n log n/k) than the
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bound established by previous works [HK84, GHMSL91]. Our main contribution,
however, has to do with modularity. Our parceling of Sn into 2k-parcels uses only
two modules. Namely, each parcel is either a copy of3 Bk or a copy of another
network, let’s call it Xn,k. This improves previous parceling [HK84, GHMSL91]
of this network which use log k modules.

A weakness of our parceling of Sn is that one of the modules, Xn,k, depends
on n. This dependency can be removed, not for Sn itself, but for a variant of
it. Namely, there is an n-input sorting network Ŝn,k that is very similar to Sn

and has a 2k-parceling that is made of two modules which do not depend on n;
one of these modules is Bk and the other is Sk; moreover, this parceling has the
same number of parcels as the above parceling of Sn.

Other contributions of this paper are the techniques used to establish the
above results. We consider the parceling of a wider family of networks—those
having the extended buddy property (to be defined). The upper bound on mem-
bers of this family is established via a straightforward parceling. The lower bound
is established by transferring such a bound from one network to another via
graph embedding.

2 Preliminaries

In this paper, a digital system (or subsystem) is represented by an h-graph—
a directed4 (multi-)graph having a designated node called the host [LS83] and
denoted h. The host is not actually part of the system; it represents the external
world; edges incident to it represent the input/output edges of the system.

Formally, a directed graph G is a pair G = 〈V G, EG〉, while an h-graph is a
triplet G = 〈V G, EG, hG〉. When no confusion can arise, we sometimes omit the
graph superscript (G in this case) from such notations.

Let G be a directed graph (or h-graph) and s a subset of its nodes. An input
(resp., output) of s is an edge whose head (resp., tail) is in s and whose tail
(resp., head) is not in s. We denote by IG(s) (resp., OG(s)) the number of inputs

(resp., outputs) of s and define IOG(s)


= IG(s) + OG(s).

Let G be an h-graph. A parcel of G is a subset of V G − {hG}. For a positive
integer k, a k–parcel of G is a parcel p such that IO(p) ≤ k. A k–parceling of G
is a partitioning of V G−{hG} into (disjoint) k–parcels. The k–parceling number
of G, denoted P(G, k), is the minimal number of parcels in a k–parceling of G.
(In the special case where G has no k–parceling we define P(G, k) = ∞.) Note
that the designated host is mandatory in the definition of the parceling number;
otherwise, any graph has a parceling number of 1.

3 Each copy has its own association of the min/max functionality with the two edges
emerging from each comparator; this association does not need to be wired-in and
can be established during the initialization of the system.

4 The fact that the graph is directed is clearly irrelevant as far as parceling is concern.
However, we find the exposition to be more convenient in the context of directed
graphs.
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Typically, interconnection networks (e.g., the Butterfly) are represented by
host-less graphs. In this case, we use the following uniform way to augment a
graph by a host. For a positive integer j and a host-less directed graph G, the h-
graph hj(G) is the graph generated from G by adding a host h and the minimal
number of edges, all incident to h, such that the in-degree and out-degree of any
node v �= h is at least j. (Note that h2 reflects the usual usage of the Butterfly
and the Bitonic sorting network.) For a host-less graph G, we sometimes use
P(G, k) to denote P(h2(G), k).

A (host-less) directed layered graph (dil-graph in short) is an acyclic directed
graph G whose node-set is partitioned into sets called layers (or levels), denoted
LG

1 , LG
2 , · · · , LG

dG , and whose edge-set is partitioned into sets called edge-levels,
denoted EG

1 , EG
2 , · · · , EG

dG−1, such that any edge of EG
i leads from a node of LG

i

to a node of LG
i+1. The number of levels, dG, is called the depth of G.

This paper studies the parceling of two well known dil-graphs: the Butterfly
and the Bitonic sorting network. Henceforth, n is used exclusively to denote the
number of input edges of these graphs and is always a power of two and greater
than one.

L1 L2 L3 L4

host host

Fig. 1. h2(B16)—the 16-input augmented Butterfly

For a definition of the Butterfly see, for example, [L92]. Our notation of the
Butterfly somewhat differs from the common one as follows: Our Butterfly is a
dil-graph, and we name the Butterfly by the number of its input edges. (This
naming is chosen to be consistent with the Bitonic sorting network.) So, Bn is the
Butterfly having log n levels each of n/2 nodes. Figure 1 depicts h2(B16)—the
16-input augmented Butterfly.

The following three lemmas state several well known properties of the But-
terfly that are used in our study. Proofs of these lemmas can be found, for
example, in [EL97, GL04]. The first well known property is the Banyan property
[LGGL73] — a directed graph is Banyan if it is acyclic and for any node u of
in-degree 0 and any node v of out-degree 0 there is exactly one directed path
from u to v.
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Lemma 1. The Butterfly is Banyan.

Lemma 2. Let v and v′ be two nodes in the same level of a Butterfly Bn.
Then there is an automorphism5 π of Bn such that π(v) = v′. Moreover, let
(v→u) and (v′→u′) be two edges in the same edge-level of Bn. Then there is an
automorphism π of Bn such that π(v) = v′ and π(u) = u′.

For a dil-graph G and an interval of integers I ⊂ [1, dG], the I segment of
G, denoted G[I], is the subgraph of G induced by

⋃
i∈I Li. (That is, G[I] is a

dil-graph of depth |I| whose levels are L
G[I]
1 = LG

min(I), L
G[I]
2 = LG

min(I)+1, etc.)
A segment of G is a subgraph of G of the form G[I] for some interval I. For
1 ≤ i ≤ j ≤ dG, we shorten G[[i, j]] to G[i, j] and we use G[i,∞] to denote
G[i, dG].

Lemma 3. Let G′ be a segment of Bn. Then each connected6 component of G′

is isomorphic to B
2dG′ .

0120122 12

1st stage 2nd stage 4th stage3rd stage

︸︷︷︸ ︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Fig. 2. S16—the 16-input Bitonic sorting graph

Let us now consider the Bitonic sorting network. (For a definition see [B68].)
The n–input Bitonic network has 1

2 log(n)(log(n) + 1) levels of n/2 nodes each;
it is conceptually partitioned into log n segment called stages, where the i–th
stage is of depth i and is composed of 2n−i disjoint (2i−1 × 2)–mergers7. This

5 Note that, since our Butterfly is directed, any automorphism of it is necessarily a
level-preserving one.

6 The term ‘connected’ means: connected in the base undirected graph.
7 An (i × j)–merger merges j sorted lists, of i elements each, into a single sorted list.
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conceptual division and the functionality of the stages are related to the behavior
of the network but not to its graph and are therefore largely irrelevant to our
study.

Let Sn denote the dil-graph of the n–input Bitonic network. Figure 2 depicts
S16 drawn in a “butterfly-style,” i.e., each edge-level is composed of 4–edge
‘butterflies’ all of the same size. The only important attribute of the network
which is absent in the graph is the distinction between the edge that carries
the minimal key and the edge that carries the maximal one out of the two keys
that emerge from each comparator; this distinction is, of course, irrelevant to the
parceling of the network. (This distinction is critical for being a sorting network;
however, such a differentiation of the edges can be established during the system
initialization.)

3 Upper Bounds

This section establishes upper bounds on the parceling number of the Butterfly
and the Bitonic sorting network. Rather than studying the parceling of only
these networks, we consider the parceling of a wider family of graphs—those
having the extended buddy property defined below. This family includes the
Butterfly and the major part of any large Bitonic sorting network.

For an integer j ≥ 1, a dil-graph G has the j–buddy property if for any G′, a
segment of G of depth at most j, each connected component of G′ is isomorphic
to B

2dG′ —i.e., each connected component is a depth-dG′
Butterfly8.

Note that any dil-graph has the 1–buddy property, that the 2–buddy property
is the plain buddy property [BFJM87], that if G has the j–buddy property then
it has the j′–buddy property for any j′ ≤ j, that if G has the j–buddy property
then so does any segment of G, and that if G has the dG–buddy property then
it has the j–buddy property for any j.

By Lemma 3, Bn has the j–buddy property for any j. As for Sn, Figure 2
reveals that S16 has the 2-buddy property (but not the 3-one), that S16[2, 10]
has the 3–buddy property, and that S16[4, 10] has the 4–buddy property.

The next two lemmas extract the only properties of the Bitonic network
that are relevant to our study. They establish that, for j << log n, Sn has two
overlapping segments; the smaller one, the tail, composed of the first 1

2j(j+1) =
dS2j levels has a compact parceling, while the larger one, the head, is composed
of all but the first 1

2 (j − 2)(j− 1) = dS2j−2 levels and has the j–buddy property.
The first lemma is straightforward.

Lemma 4. Let 1 ≤ j ≤ log n. Then:
a. Any connected component of Sn[1, 1

2j(j + 1)] is isomorphic to S2j .
b. P(Sn[1, 1

2j(j + 1)], 2 · 2j) = n/2j.

8 By a theorem of Bermond, Fourneau and Jean-Marie [BFJM87], G has the j–buddy
property iff for any G′ as above: each connected component of G′ is Banyan and has

exactly 2dG′−1 nodes in each level.
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The second lemma has been established in [GL04].

Lemma 5. For 1 ≤ j ≤ log n: Sn[12 (j − 2)(j − 1) + 1,∞] has the j–buddy
property.

A parceling of a dil-graph is called a straightforward parceling if for any edge-
level Ei: either all its edges are inter-parcel ones or all are intra-parcel ones
(but not necessarily within a single parcel). We establish upper bounds on the
parceling number of Bn and Sn via straightforward parceling.

A directed graph is l–bounded if the in-degree and the out-degree of any node
are at most l. Note that the Butterfly, the Bitonic sorting network and any dil-
graph having the 2–buddy property are 2–bounded, and that if G is l–bounded
then hl(G) is a directed Euler graph.

For a directed graph or h-graph G and p ⊂ V G, define G(p) as the subgraph
of G induced by p. The next lemma is immediate.

Lemma 6. Let G be a host-less l–bounded graph and p ⊂ V G. Then:

IOhl(G)(p) = 2l|p| − 2|EG(p)|.
Hence, the total number of inputs and outputs of a parcel p in hl(G) depends on
l and G(p) but does not depend otherwise on G.

Lemma 7. Let G1 and G2 be subgraphs of a host-less directed l–bounded graph
G such that G1 and G2 are node-disjoint and together cover all the nodes of G.
Then

P(hl(G), k) ≤ P(hl(G1), k) + P(hl(G2), k)
for any k.

Proof. By Lemma 6, any k–parcel of hl(G1) or hl(G2) is also a k–parcel of hl(G).
Hence, any two k–parcelings of hl(G1) and hl(G2) combine into a k–parceling
of hl(G). ��

The next lemma is immediate.

Lemma 8. Let G be a dil-graph with the dG–buddy property, dG ≤ j, and m =
2|L1|. Then P(G, 2 · 2j) ≤ �m/2j�.

The following lemma establishes an upper bound on the parceling number of
graphs having the extended buddy property.

Lemma 9. Let G be a dil-graph with the max(2, j)–buddy property, 1 ≤ j ≤ dG,
and m = 2|L1|. Then P(G, 2 · 2j) ≤ �dG/j�m/2j.

Proof. Partition the interval [1, dG] into �dG/j� intervals such that the cardinal-
ity of each is at most j. This induces a partitioning of G into segments of depth
at most j. Since G has the 2–buddy property, it is 2–bounded. Apply Lemmas
7 and 8 and note that �m/2j� = m/2j. ��

An immediate consequence of Lemma 9 is the following upper bound on the
parceling number of Bn.
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Theorem 1. Let n and k be powers of 2 such that 2 ≤ k ≤ n. Then

P(Bn, 2k) ≤ |Bn|/|Bk|+ n/k.

The next theorem establishes an upper bound on the parceling number of
Sn.

Theorem 2. Let n and k be powers of 2 such that 8 ≤ k ≤ n. Then

P(Sn, 2k) ≤ |Sn[dSk/4 + 1,∞]|/|Bk|.

Proof. The inequality clearly holds when n = k, so assume k < n. Let k′ = log k.
Following Lemmas 4 and 5, Sn is covered by two overlapping segments: the tail
T = Sn[1, dSk ] and the head H = Sn[dSk/4 + 1,∞]. The head H has the k′-
buddy property, and the tail has an obvious optimal parceling which establishes
P(T, 2k) = n/k.

To parcel Sn we partition it into a head and a tail (which may differ from
the above H and T ) and parcel each segment separately as follows. Let H be
the minimal segment of Sn such that its depth is a multiple of k′ and, together
with T , it covers all of Sn. Let T be the rest of Sn; i.e., T is the segment of Sn

such that (T , H) is a partition of Sn. The network H is a segment of H and,
therefore, it has the k′-buddy property. By Lemma 9,

P(H, 2k) ≤ |H|/|Bk|. (1)

Moreover, this bound is achieved by a parceling in which all the parcels are
isomorphic to Bk. We have: dSk − dSk/4 = 2k − 1. Hence,

dH ≤ dSn − dSk + k′ − 1 = dSn − dSk/4 − k′.

This implies:
|H | ≤ |Sn[dSk/4 + 1,∞]| − |Sn[1, k′]|. (2)

By Lemma 4(a), T is the disjoint sum of n/k sub-networks, all isomorphic to
each other, and each sub-network has k input and k output edges. The new tail,
T , is a segment of T . Both T and T are 2-regular; hence, the above statement
holds also for T ; i.e., T is the disjoint sum of n/k sub-networks all isomorphic to
each other and each sub-network has k input and k output edges. This implies:

P(T , 2k) ≤ n/k = |Sn[1, k′]|/|Bk|. (3)

By Lemma 7,
P(Sn, 2k) ≤ P(T, 2k) + P(H, 2k). (4)

Combining inequalities (1, 2, 3, 4) yields:

P(Sn, 2k) ≤ |Sn[dSk/4 + 1,∞]|/|Bk|.

��
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We conjecture that, for k a power of two, the parcelings implied by Lemma 9
and Theorem 2 are optimal for graphs having the j–buddy property and for the
Bitonic network.

Our parceling of the Bitonic network is somewhat more compact then the
parceling presented in [HK84] and [GHMSL91]. However, the main advantage
of our parceling is modularity. Our parceling is made of only two modules while
that of [HK84] and [GHMSL91] is made of log k+1 modules. One of our modules
is Bk and the other depends on both k and n. This latter dependency on n is
undesirable and can be removed via a slight modification of the network Sn as
follow. The new network, let us call it Ŝn,k, is derived from Sn by extending
the latter with at most k − 1 additional levels at its head so that the segment
Ŝn,k[dSk + 1,∞] has the k-buddy property and its width is a multiple of k.
(There are several networks having this property; see, for example, [GL04].) The
extended network is, of course, a sorting network. In fact, all the additional
comparators of this network are redundant — through one of their input edges
they receive a key which is always greater than (or equal to) the key received
through the other edge. Applying the procedure of this section to Ŝn,k, instead
of Sn, produces a parceling having the same number of parcels and the same
number of modules, but these modules do not depend on n; they are Bk and Sk.

4 Lower Bounds

This section establishes lower bounds on the parceling number of the Butterfly
and the Bitonic sorting network. We accomplish this task in three steps as fol-
lows. Firstly, we establish a lower bound for l–bounded graphs having no parallel
edges. Secondly, we employ a graph embedding [L92] to transfer the above lower
bound to graphs having the extended buddy property. Finally, from the latter
bound we infer lower bounds for the Butterfly and the Bitonic sorting network.

We begin by showing that, under certain conditions, the parceling number
of a graph is no smaller than the parceling number of any of its subgraphs. A
subgraph G′ of a directed graph G is a convex subgraph of G if for any directed
path t of G whose endpoints are both in G′: all the nodes and edges of t are in
G′. For example, any segment of a dil-graph is a convex subgraph.

Lemma 10. Let G′ be a convex subgraph of a host-less, directed, l–bounded
graph G. Then:
a. IOhl(G)(V G′

) ≤ IOhl(G)(V G).
b. P(hl(G′), k) ≤ P(hl(G), k) for any k.

(Note that G is not necessarily acyclic.)

Proof. To establish (a) note that any directed simple cycle of hl(G) crosses at
most one input of V G′

, and if it does cross an input, then it must pass through h.
Since hl(G) is a directed Euler graph, there is a set C of edge-disjoint directed

simple cycles of hl(G) that cover all the edges of hl(G). By the above note on
simple cycles,
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Ihl(G)(V G′
) = |{c ∈ C : c crosses an input of V G′}| ≤ Ihl(G)(V G).

Since hl(G) is an Euler graph, IOhl(G) = 2Ihl(G). This established (a).

To prove (b), it suffices to show that for any k–parcel p of hl(G), p′


= p

⋂
V G′

is a k–parcel of hl(G′). Let p be such a parcel. Define Q


= G(p) and Q′ 


= G(p′).
Note that Q′ is a convex subgraph of Q. By Lemma 6 and claim (a) for the
graphs Q and Q′,

IOhl(G
′)(p′) = IOhl(Q)(V Q′

) ≤ IOhl(Q)(V Q) = IOhl(G)(p).

��

Lemma 11. Let G be an l–bounded dil-graph with no parallel edges, and let
0 < k < l. Then:
a. |p| ≤ lk/(l− k) for any (2kl)–parcel p of hl(G).
b. |G|(l − k)/lk ≤ P(hl(G), 2kl).

Proof. To prove (a), let p be a (2kl)–parcel of hl(G), and define Q = G(p). We
claim that IQ({v}) ≤ k for any node v ∈ p. To establish this claim, let Q′ be the
subgraph of Q induced by {u : (u→ v) ∈ EQ}. Since G is a dil-graph, Q′ is an
edge-less convex subgraph of Q. By Lemmas 6 and 10(a),

2l|Q′| = IOhl(Q)(Q′) ≤ IOhl(Q)(Q) ≤ 2kl.

Hence, |Q′| ≤ k; since there are no parallel edges, IQ({v}) ≤ k. This establishes
our claim.

By this claim, each member of p contributes at least (l− k) to Ihl(G)(p). By
symmetry, the same holds for Ohl(G)(p). Hence, 2|p|(l − k) ≤ IOhl(G)(p) ≤ 2lk.
This establishes (a). Claim (b) follows immediately from (a). ��

Next, we transfer the lower bound of Lemma 11 to graphs having the buddy
property via graph embedding. An embedding of a directed9 graph G (the guest)
into a directed graph H (the host) is a function π defined on V G

⋃
EG such that

π(V G) ⊂ V H and for any edge (u e→ v) ∈ EG, π(e) is a directed path of H
leading from π(u) to π(v).

The dilation of π is the maximal length of π(e) paths; the congestion of an
edge e of H is the number of edges of G whose paths cross e; the congestion of
π is the maximal congestion of edges of H . For a function f and a set s, define
f−1(s)



= {x : f(x) is defined and f(x) ∈ s}. Under this notation, the load of

π is max{|π−1({u})| : u ∈ V H}.
The next lemma transfers a lower bound from a guest graph to a host graph.

Lemma 12. . Let π be an embedding of an h-graph G into an h-graph H such
that the congestion of π is c and π−1({hH}) = {hG}. Then P(G, kc) ≤ P(H, k)
for any k.

9 Graph embedding is usually defined for undirected graphs [L92]; it is more convenient
here, however, to define it in the context of directed graphs.
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Proof. Let PH be a k–parceling of H with |PH | = P(H, k). Define the following
parceling of G:

PG 

= {π−1(p) : p ∈ PH and π−1(p) �= ∅}.

By definition, PG is a partitioning of V G−{hG} and |PG| ≤ |PH |. It remains to
show that PG is a (kc)–parceling. Consider a parcel p ∈ PG. We have p = π−1(q)
for some q ∈ PH . Each of the inputs (outputs) of p is embedded into a path that
crosses, at least once, an input (output) of q. Since IOH(q) ≤ k and each edge
of H is used by at most c paths, we must have IOG(p) ≤ kc. ��

Lemma 13. Let j ≥ 1 and let a dil-graph H have the (j + 1)–buddy property.
Then there is a 2j–bounded dil-graph G with no parallel edges and with |G| ≥
|H |/j and there is an embedding π of h2j (G) into h2(H) whose congestion is
2j−1 and π−1({hH}) = {hG}.

Proof. Define the dil-graph G of depth dG = �dH/j� by:

LG
i



= LH

1+(i−1)jand
EG

i


= {u→ v : u ∈ LG

i , v ∈ LG
i+1, H has a directed path from u to v}.

Since H has the (j + 1)–buddy property, G is 2j–bounded. In fact, since the
Butterfly is Banyan (Lemma 1), the in-degree of all G nodes, except those of
LG

1 , and the out-degree of all G nodes, except those of LG
dG , are exactly 2j .

Construct the required embedding as follows. Each node of G is mapped to
itself; the host of G is mapped to the host of H ; each edge (u → v) ∈ EG is
mapped to the unique path in H from u to v; the 2j parallel edges from h to a
node v of G are mapped evenly onto the two parallel edges from h to v in H ;
finally, the 2j parallel edges from a node v of G to h are mapped evenly onto
the paths leading from v to h in H .

It remains to check that the congestion of the embedding is 2j−1. We consider
only edges of of h2(H) that reside in the first (dG − 1)j edge-levels of H . The
analysis for the other edges is similar. Such an edge e belongs to a connected
component C of H [1 + (i − 1)j, 1 + ij] for some i. Due to the (j + 1)–buddy
property, C is isomorphic to B2j+1 . Let E′ be the edge-level of C having e. A
total of (2j)2 paths uses the 2 · 2j edges of E′, and, by Lemma 2, the congestion
of all these edges is the same. Hence, the congestion of e is 2j−1. ��

Lemma 14. Let H be a dil-graph having the (j + 1)–buddy property, j ≥ 1, k a
power of 2 and 2 ≤ k ≤ 2j. Then:(

(1− k/2j+1) log k/j
)
|H |/|Bk| ≤ P(H, 2k).

Proof. Let j, H and k be as above. Define l


= 2j. By Lemma 13, there is a

dil-graph G such that G is l–bounded, has no parallel edges, |G| ≥ |H |/j and
there is an embedding of hl(G) into h2(H) with congestion 2j−1. By Lemma 12,

P(hl(G), 2k2j−1) ≤ P(H, 2k).
Applying Lemma 11(b) on the graph G with k′ = 1

2k yields:

[(2l − k)/lk] |G| = [(l − k′)/lk′] |G| ≤ P(hl(G), 2k′l) = P(hl(G), 2k2j−1).
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Combining the above inequalities yields:(
(1− k/2j+1) log k/j

)
|H |/|Bk| = [(2l − k)/lk]|H |/j

≤ [(2l − k)/lk]|G|
≤ P(hl(G), 2k2j−1)
≤ P(H, 2k).

��
Define the function α : (N + 2)→ R by

α(k)


= (log(k)− 1

2 )/(log(k) + �log log(k)�).
By elementary calculus, limk→∞ α(k) = 1 and α(k) ≥ 1

2 for any k which is a
power of 2 and is greater than 1. Moreover, for j = k + �log log(k)� we have
α(k) ≤ (1 − k/2j+1) log(k)/j. This, together with Lemma 14 and the fact that
a Butterfly has the i-buddy property for any i, implies our first lower bound,
concerning the Butterfly.

Theorem 3. Let n and k be powers of 2 such that 2 ≤ k ≤ n. Then

α(k)|Bn|/|Bk| ≤ P(Bn, 2k).

Define the function β : (N + 2)→ R by

β(m)


= α(m)(log(m)− log log(m))/(log(m) + 2).

By elementary calculus, limm→∞ β(m) = 1 and β(m) ≥ 1
8 for any m that is a

power of 2 and is greater than 1. The next theorem establishes a lower bound
on the parceling number of the Bitonic network.

Theorem 4. Let n and k be powers of 2 such that 8 ≤ k < n. Then

β(min(k, n/k))|Sn[dSk/4 + 1,∞]|/|Bk| ≤ P(Sn, 2k).

Proof. Let m = min(k, n/k), j = log(k) + �log log(m)� and let H be the final
segment of Sn without the first dS2j−1 levels; namely, H = Sn[dS2j−1 + 1,∞].
By Lemma 10(b), P(H, 2k) ≤ P(Sn, 2k). By Lemma 5, H has the (j +1)–buddy
property. By Lemma 14,(

(1− k/2j+1) log k/j
)
|H |/|Bk| ≤ P(H, 2k).

We have:

α(m) = (1− 1/(2 log(m)) log(m)/(log(m) + �log log(m)�)
≤ (1− 1/(2�log log(m)�+1) log(k)/(log(k) + �log log(m)�)
= (1− k/2j+1) log k/j.

Recall that dS2i = 1
2 i(i + 1). Hence,

|Sn[dSk/4 + 1,∞]|(log(m)− log log(m))/(log(m) + 2)
≤ |Sn[dSk/4 + 1,∞]|(log(n)− log(k)− �log log(m)�+ 1)/(log(n)− log(k) + 2)

≤ |H |.
Combining the above inequalities yields:

β(min(k, n/k))|Sn[dSk/4 + 1,∞]|/|Bk| ≤ P(H, 2k) ≤ P(Sn, 2k).
��
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Abstract. We consider the design of an ontology for marketing knowl-
edge. Such an ontology contains two hierarchies, a customer hierarchy
and a product hierarchy. The product hierarchy representation is straight-
forward, as in general each level consists of products that are more spe-
cific than the products on the previous level. However, the customer
hierarchy is problematic, since it involves many independent dimensions
such as age, gender, income, etc. A straightforward ordering of the dif-
ferent dimensions to create a tree hierarchy is ineffective. We present an
innovative design for the customer hierarchy based on introducing inter-
sections of options for various dimensions on demand. We call such an
ontology an intersection ontology. The advantages of such a design are
explored and evaluated using our Web marketing project.

1 Introduction

1.1 Motivation

The result of market research is marketing knowledge that is used as input for
target marketing activities. However, marketing knowledge is usually complex,
consisting of many detailed facts, which by themselves do not give any clear
picture and in combination are often overwhelming. What is desirable is an
organization of marketing knowledge in an ontology that allows for the explicit
representation of interesting abstractions and generalizations.

Ontologies have become important resources in many application domains.
However, in marketing, ontologies have been close to non-existent. In this paper,
we develop a kind of ontology, called an intersection ontology, for a marketing
application and explore its advantages.

1.2 What Are Ontologies?

We will start with a fairly non-technical summary of what ontologies are and
what they are useful for. Ontology is known as the branch of philosophy con-
cerned with the study of the nature of being. However, when computer scientists
� This research was funded in part by the New Jersey Commission for Science and

Technology through the New Jersey Center for Software Engineering.
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are referring to “an ontology” they mean a computer implementation of human-
like knowledge.

Ontologies are descendants of the semantic networks in Artificial Intelligence.
Quillian’s first semantic network in 1968 was a computer implementation of a
dictionary [1]. Terms in dictionaries refer to other terms, and Quillian imple-
mented these references by pointers. However, as one term could have different
meanings, a distinction is made between terms and concepts. Concepts are the
fundamental building blocks of all semantic networks and ontologies.

A concept is a basic unit of knowledge, and, as opposed to a term, a concept
is unambiguous. Quillian used only a small number of kinds of links which have
been extensively studied and greatly refined since then. The most fundamental
of these links, describes a generalization/specialization relationship between two
concepts. This relationship satisfies transitivity. It has been variously called IS-A,
sub-concept, subclass, a-kind-of, etc. It allows property inheritance, as follows.

Humans have additional “local” information about concepts. For example,
solid objects have color, size, etc. We call this kind of local information “attri-
butes”, “properties” or “slots”. If a general concept has an attribute (vehicles
have a weight), then a specific sub-concept will have the same property (cars
have a weight). One can imagine that inheritance is the propagation of a property
from the general concept to the more specific concept against the direction of the
IS-A link. Besides the IS-A links, ontologies contain other links, e.g., likes, owns,
connected-to, etc. Most of these additional links have no “built-in behavior”.
These links are variously called associative relationships, roles, semantic rela-
tionships, and are labeled by their name. Relationships are inherited down along
IS-A links.

Because a concept cannot be more general than itself, and because of the tran-
sitivity of the IS-A links, there cannot be any cycles of IS-A links in a semantic
network. Furthermore, it is practical to have one concept (often called THING)
that is a generalization of every concept in an ontology. Thus, the concepts and
IS-A links in an ontology form a hierarchy with a root. In other words, the
hierarchy of an ontology is a rooted Directed Acyclic Graph (DAG), where the
nodes represent the concepts and the links represent IS-A relationships. Further-
more, the concepts and the IS-A links together would form a weakly connected
component.

The definition of an ontology as a graph results in a natural diagram represen-
tation for ontologies. Figure 1 shows an example of an ontology. This example
is adapted from [2] by eliminating other relationships such as part-of. In this
and later figures, every box stands for a concept. Bold arrows (typically pointing
upwards) stand for IS-A relationships. Thin arrows stand for other relationships.
The IS-A relationships in this example form a tree. Later we will see examples
using DAGs. Family terms, such as child, ancestor and descendant are used. A
number of other extensions exist for ontologies, e.g. rules or axioms. However,
these are not used in our model of an intersection ontology and will be omitted.

Thus, we present the definition of an ontology as follows: An ontology is a
directed graph of nodes, which represent concepts, and edges, which represent
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Fig. 1. A Partial Interest Hierarchy (Tree)

IS-A and semantic relationships between pairs of nodes. Concepts are labeled by
unique terms. Concepts have additional (name, value) pairs, called attributes,
where the attribute name needs to be unique for each concept. The set of all con-
cepts together with the set of all IS-A links form a rooted, connected, Directed
Acyclic Subgraph of the ontology. This subgraph is called the taxonomy of the
ontology. Both attributes and semantic relationships may be inherited down-
wards, against the direction of the IS-A links, from more general concepts to
more specific concepts.

Modern ontologies are attributed to Thomas Gruber [3] who built on a rich
history which we briefly reviewed in [4]. Ontology building deals with mod-
eling the world with shareable knowledge structures. With the emergence of
the Semantic Web, the development of ontologies and ontology integration have
become very important [5–8]. The Semantic Web is a vision, for a next generation
Web, of Tim Berners-Lee, the inventor of the original Web, and colleagues. This
vision is described in a figure called the “layer cake” of the Semantic Web [5].
This figure consists of nine functional layers of increasing technical complexity
and abstraction. Each layer supports all the layers above it. Ontologies are flush
in the middle of the layer cake. All the layers below Ontology, such as XML and
RDF Schema are well developed. All the layers above ontologies, such as Rules
and Proofs are well established within Artificial Intelligence (AI), but do not
exist in widely applicable form outside of AI.

Ontologies will be used in the Semantic Web as follows. The current Web has
shown that string matching by itself is often not sufficient for finding specific
concepts. Rather, special programs are needed that search the Web for the con-
cepts specified by a user. Such programs, which are activated once and traverse
the Web without further supervision, are called agent programs.

Successful agent programs will search for concepts as opposed to words. Due
to the well known homonym and synonym problems, it is difficult to select
between different concepts expressed by the same word (e.g., Jaguar the animal,
or Jaguar the car). However, having additional information about a concept,
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such as which concepts are related to it, makes it easier to solve this matching
problem. For example, if that Jaguar that IS-A car is desired, then the agent
knows which of the meanings to look for.

Ontologies provide a repository of this kind of relationship information. To
make the creation of the Semantic Web easier, Web page authors will derive the
terms of their pages from existing ontologies, or develop new ontologies for the
Semantic Web.

Many technical problems remain for ontology developers, e.g. scalability. Yet,
it is obvious that the Semantic Web will never become a reality if ontologies
cannot be developed to the point of functionality, availability and reliability
comparable to the existing components of the Web.

Some ontologies are used to represent the general world or word knowledge.
Other ontologies have been used in a number of specialized areas. An overview
of ontologies and their usages and properties can be found in [9]. For a compre-
hensive review of established ontologies see [10]. Two special issues on ontologies
are [11, 8].

1.3 Ontologies in the Context of Web Marketing

Our work on marketing ontologies is part of a larger project that deals with
the extraction of marketing knowledge from the World-Wide Web [12]. We have
created a large database of customers. We extracted information from the home
pages of individual Web users. Our database contains demographic information
and interests of each customer.

We would prefer information about products that each of these customers
has bought. However, this information is not publicly accessible on the Web.
On the other hand, there are many very low-level interests with corresponding
products. For example, the Yahoo interest hierarchy contained over 31,000 inter-
ests when we analyzed it. Many of these interests are as specific as the names of
actresses or singers. If somebody has an interest in “Jennifer Lopez” then one
may comfortably presume that this person might buy CDs or movies of Jennifer
Lopez. Thus, information about interests can, to some degree, “stand in” for
information about products.

We have processed the relational database of demographic and interest infor-
mation with the WEKA data mining algorithm [13] and have found association
rules between classifications of customers and interests. Thus, we needed an
ontology that allows us to represent the resulting association rules of a data
mining operation in a succinct format.

Note that we are not designing a marketing domain ontology which needs
to represent all varied aspects of the marketing domain. We are creating an
intersection ontology as an integral part of a marketing system. Our applica-
tion deals with customer classifications needed for a marketing ontology. Our
ontology is, in Sowa’s terms, an application ontology [14], serving our marketing
project [12] described above. As such, our marketing ontology concentrates only
on representing purchasing knowledge, as described in detail in Section 2.
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The straightforward representation of a customer classification is a tree hier-
archy. The root represents the concept PERSON. The various demographic
dimensions are ordered. At each of the levels we consider one different demo-
graphic dimension according to the above order and branch each node in the
previous level to all possible options of this level’s dimension. However, as we
shall show there are problems with this representation.

To overcome these problems, we draw on Sowa’s notion of representing con-
ceptual knowledge using distinctions [15] and on Wille’s use of intersections in
Formal Concept Analysis [16, 17]. Due to the demands of the domain, realizing
there is no natural order among the demographic dimensions and the need for
an economical representation, we have developed an ontology that relies heavily
on the use of “intersections” of concepts. To further economize, our ontology
only contains those intersections about which we have marketing knowledge that
needs to be represented. Thus, concepts are inserted into the ontology dynami-
cally on demand. In an intersection hierarchy all the options of all dimensions
are children of PERSON. All the relevant customer classifications appear in the
next level, each classification as a child of all its options. Such a representation
is called a three-level intersection hierarchy. Finally we represent a more econo-
mical solution where the customer classifications can be distributed over several
levels – the multi-level intersection hierarchy.

Section 2 discusses in more detail why an ontology for marketing knowl-
edge is useful. In Section 3, we will show the design of a customer hierarchy
by ordered dimensions and the problems arising from it. Then, in Section 4,
we will consider an alternative design for the customer hierarchy by creating
“intersections” which results in an intersection ontology. In Section 5, we show
the network design of a specific kind of intersection ontology, called multi-level
intersection ontology.

The evaluation based on our Web marketing project is described in Section 6.
In Section 7, we discuss how our marketing intersection ontology relates to Sowa’s
knowledge engineering by distinctions. Our conclusions appear in Section 8.

2 Representation of Marketing Knowledge

The essence of our marketing ontology is a collection of buy-relationships from
customer classifications to product classifications. The basic facts we need to
represent are of the form that a specific classification of customers tends to buy a
given product or family of products. For example, “Married women with children
buy toys.” The challenge is to find a representation of this kind of knowledge in
a convenient and economical way that fits into our ontology framework.

The marketing ontology needs to contain two hierarchies, a customer classifi-
cation hierarchy, in short, customer hierarchy, and a product classification hier-
archy, in short, product hierarchy. The group with the classification MARRIED
WOMAN WITH CHILDREN (TOY) needs to be identifiable in the customer
(product) hierarchy, either as a node or a group of nodes. To achieve the desired
succinct representation, we prefer a single node for the customer classification
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concept and a second single node for the product classification concept. We con-
nect those two nodes by a single relationship link with the label “buys”, which
is an economical representation capturing the desired marketing knowledge for
an ontology.

Figure 2 shows a tiny ontology excerpt of four nodes with three “buys”
connections. The node WOMAN WITH CHILDREN and its child MARRIED
WOMAN WITH CHILDREN belong to the customer hierarchy. The node TOY
and its child DOLL belong to the product hierarchy. The three connections are
labeled “buys.” The “buys” relationship to TOYs is inherited from WOMAN
WITH CHILDREN to MARRIED WOMAN WITH CHILDREN. The inherited
relationship is a dashed arrow, usually not shown in diagrams, since it can be
inferred.

On the other hand, if the customer classification is represented by k nodes
(k > 0) and the product classification is represented by l nodes (l > 0), then
up to k ∗ l “buys” relationships are needed to represent the proper marketing
knowledge, which is less desirable. Figure 3 represents a tiny part of a customer
hierarchy and a product hierarchy. In Figure 3, two nodes are need to represent
“men with children” or “electric toys”. Thus, 4 arrows are needed to represent
the fact that “men with children buy electric toys.”

An alternative way with nodes representing “men with children” and “electric
toys”, respectively, with an arrow connecting them offers a more economical rep-
resentation. However, if we represent ELECTRIC TOYS and NON-ELECTRIC
TOYS at level two and the distinction between OUTDOOR and INDOOR at
level three, then “men with children buy outdoor toys” will require 4 arrows.
As we will discuss later, for each sequential ordering of the relevant dimensions,
there are some marketing knowledge facts with an uneconomical representation.

buys

buys
TOY

DOLL

buys

WOMAN WITH CHILDREN

MARRIED WOMAN WITH CHILDREN

Fig. 2. Extract of a Marketing Ontology

We use the link with the label “buys” to mean “is likely to buy”. Thus,
“buys” is a statement strictly about a (meaningful) percentage of the population
satisfying the demographic data.

For practical usability, a marketing knowledge representation should be as
simple as possible. For example, if data mining tells us that married men with
children buy diapers, and married women with children buy diapers, then an
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MARRIED
MAN WITH
CHILDREN

NON−ELECTRIC
OUTDOOR
TOYS

MARRIED 
MAN WITHOUT
CHILDREN

SINGLE MAN
WITH
CHILDREN

SINGLE MAN
WITHOUT
CHILDREN

ELECTRIC
INDOOR 
TOYS

NON−ELECTRIC
INDOOR 
TOYS

ELECTRIC
OUTDOOR
TOYS

MARRIED
MAN

SINGLE

MAN

INDOOR
TOYS

OUTDOOR
TOYS

TOYSMAN

buys

buys

buys

buys

Fig. 3. We need k ∗ l arrows to express a simple Marketing Fact

assertion that married people with children buy diapers is better. Such informa-
tion should be attached to exactly the concepts about which we are expressing
knowledge. In our case, we would like to associate this knowledge with the con-
cept married people with children, assuming such a concept exists in the ontology.

Finding a marketing ontology that enables the representation of all the needed
concepts explicitly without creating a combinatorial explosion of concepts for
customers is non-trivial. An intersection ontology achieves exactly this goal.
However, first, we will describe the straightforward alternative, a tree represen-
tation with ordered dimensions, and explain why it is inappropriate for marketing
knowledge.

3 Customer Tree Hierarchy with Ordered Dimensions

Following customary practice in marketing, as used, for instance, by MediaMark
[18], we perform a classification of customers along various dimensions such as
gender (man, woman), age (five age groups), marital status (single, married,
separated), children status (with children, no child), etc.

Marketing research may reveal knowledge about buying habits of a customer
classified according to several dimensions simultaneously. For example, consider
the sentence: “Middle-aged married men with children buy books on early child-
hood development.” We want in the customer hierarchy a node which corre-
sponds exactly to the above customer classification.

Consider a tree hierarchy according to the four dimensions listed above, each
dimension appears at a different level of the hierarchy. The tree hierarchy starts
with the root node PERSON at level 1. The division into the classifications MAN
and WOMAN happens at level 2. The division of men (and of women) according
to five age groups happens at level 3. There is an obvious redundancy, as the
same age choices are made twice, once below MAN and once below WOMAN.
The next two levels follow the distinction according to marital status among
three options, and children status, respectively. For a figure of a similar tree
hierarchy see Figure 6(a) in Section 6.
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In this tree hierarchy, which we will refer to as T, we are using a linear
order of the various dimensions of a customer. In other words, we prioritize
the different dimensions. The above order of dimensions was working well for
the above given example, because the customer class (middle-aged married men
with children) is represented by a unique leaf node which is the source for the
“buys” relationship to the node representing the product BOOKs ON EARLY
CHILDHOOD DEVELOPMENT.

Some marketing knowledge should be attached at a single non-leaf node in the
tree hierarchy T. For example, “Men buy football tickets” would be expressed by
a relationship that has the second level node MAN as its source and FOOTBALL
TICKET as its target.

In the last examples, customer classification is represented as one node in
T, from which one “buys” relationship link to a product node is emanating. In
other situations, the description of a class of customers may not fit so neatly into
the tree hierarchy T, as there might be a mismatch between this class and the
order of dimensions in T. Consider, “People with children invest in Education
IRAs.” Even older people may have children, and people may also invest in
IRAs for their grandchildren, so no age bracket applies here. To capture this
class of customers, we need to refer to 30 leaf nodes in the tree hierarchy T,
since the dimension considering children is at the lowest level in T. Furthermore,
each of those nodes will require a “buys” relationship to an EDUCATION IRA
node in the product hierarchy. The marketing knowledge “People with children
invest in Education IRAs,” expressed in a short sentence, requires 30 links in our
marketing ontology. This is clearly an uneconomical representation of marketing
knowledge. However, there is no inherent reason why we chose, for example,
the distinction between MAN and WOMAN at the second level, above all the
other dimensions. If, for example, the children status dimension would have been
chosen as the top-level dimension in the hierarchy, then one node and one “buys”
link would have been sufficient to represent this customer class and the associated
marketing knowledge. Hence, for every ordering of the dimensions, the hierarchy
will be well matched to some customer classes but ill fitting for others. Thus, we
have identified a serious problem which may occur for any choice of ordering the
dimensions, where many cases of marketing knowledge will require many links.
The problem is inherent in the fact that an ordering is used.

Besides this problem of uneconomical representation of marketing knowledge,
this straightforward representation has two secondary problems. One problem
is the explosion of the total number of nodes. The number of just the leaves
in T is the product of the numbers of options for all dimensions. In our tree
hierarchy T of only four dimensions, each with few choices, there are 60 leaves.
In the market research field, practitioners have identified many more dimen-
sions. For example, the ten dimensions appearing in the MediaMark Web site
[18] for customer classification are: Gender, Age, Household income, Education,
Employment status/occupation, Race with region, Marital status, County size,
Marketing region, and Household size. Since any combination of dimensions may
appear in a customer classification, the tree hierarchy must be fully developed by
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expanding all dimensions. This need was demonstrated before with the example
using the classification PERSON WITH CHILDREN.

The second problem with ordered dimensions is related to the explosion of
nodes. Whole subtrees are repeated over and over. For example, the subtree
with the marital choices is repeated for every age group. If a marketing execu-
tive decides to add a marital status “WIDOWED”, then this update has to be
performed in every subtree, leading to the well-known danger of inconsistencies
(update anomalies).

4 Customer Intersection Hierarchy

The difficulties we encountered in designing a tree hierarchy customer ontology
stem from the fact that there is no preferred order of the various dimensions.
Thus, a possible solution is to avoid prioritizing the dimensions. To solve this
problem we draw on Sowa’s notion of representing conceptual knowledge using
distinctions [15]. Sowa claims, for example, that there is no order between the
distinctions Concrete/Abstract and Object/Process. All four concepts: Concrete,
Abstract, Object, and Process are children of Thing. A concept such as Physi-
calObject is an intersection of the concepts Concrete and Object. We call the
result of consistently applying such distinctions for all dimensions on demand an
intersection ontology. The significance of creating concepts for an ontology only
on demand will be explained below.

We note that we may encounter some dimensions without a natural priority
between them in the product hierarchy as well. Figure 3 demonstrates this situa-
tion between the location dimension (indoor, outdoor) and the operating mode
dimension (electric, non-electric) of toys. Nevertheless, the situation in general
is quite different from that of the customer hierarchy, where all dimensions are
mutually independent. In the marketing field, there is an established practice
of considering some dimensions of product classification prior to others. For
example, Men’s Wear and Women’s Wear are typically in different departments
and probably even on different floors of a department store. Each of these are
further partitioned into various kinds of clothing, shoes, accessories etc. Further-
more, customers are used to this ordering of products and search accordingly for
what they desire. Hence, while in the customer hierarchy, all dimensions are
independent, some dimensions without natural priority between them exist for
products. To handle these cases of independent dimensions for products, one
could follow Sowa’s [15] practice, where intersections appear only for these few
mutually independent dimensions. In the balance of this paper, we will concen-
trate on the customer hierarchy.

The customer intersection hierarchy has a unique root node representing the
concept PERSON at level 1. Each option of each dimension is now represented
as a child of the root node at the second level of the hierarchy (see Figure 4). We
call such a node an option node. For example, in Figure 4, we have the WOMAN
option node and the MARRIED option node.
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The next question is how to represent a customer classification involving
several dimensions. For example, the classification MARRIED WOMAN WITH
CHILDREN involves three dimensions: gender, marital status and children status.
The solution is to define in the hierarchy a new kind of node that represents
a combination of several options, one option for each of several dimensions
(Figure 4). For example, a MARRIED WOMAN node represents the combi-
nation of the option WOMAN for the gender dimension and the MARRIED
option for the marital status dimension. Another node represents WOMAN
WITH CHILDREN, a combination of options for gender and children status.
The more complicated classification MARRIED WOMAN WITH CHILDREN
represents a combination of options for three dimensions: WOMAN for gender,
MARRIED for marital status and WITH CHILDREN for children status.

TEENAGE

YOUNG
WOMAN

MARRIED

WITH CHILDREN

YOUNG
WOMAN

MARRIED

AGE

SENIOR SEPARATED

STATUSMARITIAL

GENDER

STATUSCHILD

PERSON

WOMAN

WITH CHILDREN

MARRIED
WOMANWOMAN

MARRIED

WITH CHILDRENNO CHILDSINGLEMARRIEDWOMANMAN

WITH CHILDREN

YOUNG MIDDLE AGED MATURE

Fig. 4. A Sample Customer Intersection Hierarchy with Option Nodes in Level 2

We call a node that represents a combination of options of various dimensions
an intersection node, since it represents the classification of a set of customers
which is the mathematical intersection of several sets of customers, each with a
one-dimensional classification. For example, the set of MARRIED WOMAN is
the intersection of two sets MARRIED and WOMAN. Every intersection node
is a child of each of the option nodes corresponding to the options involved in
the intersection. For example, MARRIED WOMAN is a child of both MAR-
RIED and WOMAN option nodes. Hence all intersection nodes appear in level 3
of the customer intersection hierarchy. Intersection classes of different kinds
have appeared in various Object-Oriented Database (OODB) models of med-
ical ontology representations [19–24].

Note that the representation of Figure 4 is superior to the tree hierarchy
representation of Section 3, where neither of the classifications mentioned above
in this section corresponds to a single node. For instance, MARRIED WOMAN
WITH CHILDREN needs to be represented by several nodes in the tree hier-
archy T, because the AGE dimension is not mentioned in this classification. In T,
AGE is the second dimension, and both MARRIED and WITH CHILDREN are
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below AGE in the hierarchy. Thus, to incorporate MARRIED, all AGE choices
are included, too. As a result, five nodes of T are needed due to the five options
of the AGE dimension. Each of these nodes will have a link to DOLL, to capture
the marketing knowledge “Married women with children buy dolls,” represented
by one link in Figure 2. Hence T is not an economical representation of this
marketing knowledge.

As another example, fifteen nodes are needed to represent WOMAN WITH
CHILDREN in T. This number corresponds to the multiplication of the number
of options for the AGE and MARITAL STATUS dimensions, both not mentioned
in this classification. Again, 15 links will be needed to represent the marketing
knowledge “Women with children buy toys,” represented by one link in Figure 2.

The reason for this large number of nodes of T for a classification is that in
the tree hierarchy, for each dimension added to the classification, the number of
relevant nodes is multiplied by the number of options for this dimension. This
is because at each level the classification of each node of the previous level is
further subdivided into nodes according to the options considered at this level.
Thus, the representation in Figure 4, using intersection nodes, has the advantage
that each classification (selecting one option for each dimension), independent
of the number of dimensions involved, and independent of the number of their
options, is represented by a single node. Hence, each “buys” link, starting at a
customer class that is described by an intersection node, has a unique source. In
contrast, in the customer tree hierarchy T, it is typical to require several nodes
with “buys” relationships for such a classification.

Option nodes may have attributes and relationships. Intersection nodes in-
herit these properties from all their parents, enabling multiple inheritance of
properties. The root node and option nodes may also be sources in “buys” rela-
tionships.

At first glance it might appear that with intersection nodes we will generate
hierarchies that are even larger than with ordered dimensions, as we have a
large number of nodes already at the second level. However, the opposite is the
case. A crucial aspect of our definition of intersection ontologies is that concepts
below the second level are only created on demand. That is, only nodes which
represent a combination of dimensions needed for the marketing knowledge in
our database are represented in the hierarchy. If no marketing knowledge about
a specific combination of dimensions exists, then we do not create an intersection
node for this combination!

More specifically, if we do not need a specific group of customers from our
database as the source of a “buys” relationship then we do not need to create the
corresponding concept node. Thus, if there is no marketing knowledge available
in our database about a single man of Alaskan ethnic origin over seventy, then
we will not create a corresponding general concept in our ontology. Intersection
nodes are created only on demand if the need for them arises. Traditional general
ontologies and domain ontologies typically attempt to represent everything that
may exist. For our marketing application, this would result in an explosion of
concepts. With the intersection hierarchy, the explosion of nodes is controlled.
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Only concepts needed are created. In the ordered dimension representation, a
node which is not a leaf cannot be omitted from the tree hierarchy, even if no
marketing knowledge is available regarding this node, since marketing knowledge
may exist about any of its descendants.
Definition: The size of an ontology is a pair (a, b) where a is the number of
nodes and b is the number of relationships.

For instance, the size of the ontology of Figure 4 is (18, 26).

5 Multi-level Intersection Hierarchy

Now we will explicitly consider the network connecting all the nodes in the
customer intersection hierarchy. We first describe formally the network of the
intersection hierarchy, informally described in the previous section. This network
will be denoted the three-level intersection hierarchy. Our discussion will show
that the three-level intersection hierarchy is not a proper representation. We
will then introduce an alternative network, the multi-level intersection hierarchy,
overcoming the deficiencies of the three-level intersection hierarchy.

Consider an intersection node which represents the concept of a combination
of k options Oi1 , Oi2 ,..., Oik

, one for each of the corresponding k dimensions
(k ≤ n) of the n existing dimensions. Such a concept (node) is more specific
than (a child of) each of the option concepts (nodes) which represents one of the
options Oij , 1 ≤ j ≤ k, since the set of customers which satisfy all the options
Oi1 , Oi2 ,..., Oik

simultaneously, is a subset of each of the customer sets which
satisfies one option Oij , where 1 ≤ j ≤ k.

In the three-level intersection hierarchy, each intersection node is at the third
level, since all its k option parents are at the second level. Hence, the name of
this network. (See Figure 4 for a sample of a three-level customer hierarchy.)

Now we will discuss in detail why the three-level intersection hierarchy
is improper. In the three-level intersection hierarchy, only IS-A relationships
between an intersection node and option node are presented. Consider two
specific intersection nodes in Figure 4, MARRIED WOMAN and MARRIED
WOMAN WITH CHILDREN. The second classification is more specialized
than the first classification, since the set of customers, classified by MARRIED
WOMAN WITH CHILDREN, is a subset of the set of customers classified
by MARRIED WOMAN. To express this specialization, the intersection node
MARRIED WOMAN WITH CHILDREN should have as a parent the intersec-
tion node MARRIED WOMAN.

In the three-level intersection hierarchy in Figure 4, the node MARRIED
WOMAN WITH CHILDREN has three parents: WOMAN, MARRIED and
WITH CHILDREN. Should those parent relationships also exist after adding
the parent MARRIED WOMAN? The node MARRIED WOMAN itself has as
parents the option nodes WOMAN and MARRIED. A relationship from MAR-
RIED WOMAN WITH CHILDREN to WOMAN (or to MARRIED) is implied
by the transitivity of the IS-A relationship.
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Thus, we conclude that the three-level representation does not fulfill all our
requirements for a proper representation, because it does not capture the spe-
cialization which exists between intersection nodes. We will now introduce an
alternative representation, the more refined multi-level intersection hierarchy
that allows expressing parent-child relationships between two intersection nodes,
when one represents a more specific concept than the other. For a multi-level
hierarchy representation of the nodes of Figure 4, see Figure 5.
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Fig. 5. A Sample Multi-Level Customer Hierarchy

In Figure 5, the node MARRIED WOMAN WITH CHILDREN has no
parent relationship to the option nodes. On the other hand, the node MAR-
RIED YOUNG WOMAN has a parent relationship to the option node YOUNG
since the hierarchy contains neither the node YOUNG WOMAN nor the node
YOUNG MARRIED which would have been parents of MARRIED YOUNG
WOMAN and would have implied, as an intermediate node, the IS-A relation-
ship to the option node YOUNG by transitivity.

Note that Figure 5 has 5 levels. The number of explicit parent relationships
in Figure 5 is 22 versus 26 such relationships in Figure 4. Both figures have 18
nodes.

The definition for visual complexity of a diagram was introduced and used
in [25–27]. We will now modify it for use with ontologies.
Definition: The visual complexity C of an ontology of size (a, b) is the ratio of
the number of relationships (= links) to the number of nodes, C = b/a.

Hence the three-level intersection ontology of Figure 4 has size (18, 26) and
visual complexity C = 26/18 = 1.44. On the other hand, the multi-level intersec-
tion ontology of Figure 5 has size (18, 22) and visual complexity C = 22/18 = 1.22.
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In this example, the multi-level ontology has lower size and lower visual com-
plexity in comparison with the corresponding three-level ontology. Note that our
visual complexity measure is a global measure for an ontology, compared to the
notions of “tangled” and “sparse” used in [28] to measure local properties of the
top level hierarchy.

To summarize, the three-level intersection hierarchy representation is not
proper, because it does not capture IS-A relationships between intersection
nodes. Such relationships are captured by the multi-level intersection hierarchy
which also has other advantages, as follows.

1. The multi-level representation allows to use inheritance between intersection
nodes, which is not possible in the three-level hierarchy. For example, if we
know that women with children buy toys, we inherit this fact to married
women with children. In this way, the multi-level representation maintains
one of the major advantages of ontologies, the economy brought about by
inheritance-based reasoning.

2. The distribution of intersection nodes over several levels, due to the addi-
tional specialization IS-A relationship between such nodes, simplifies orien-
tation of the user in such a hierarchy.

3. The number of explicit parent relationships is typically smaller than in the
three-level intersection hierarchy. (This is not necessarily true, as one can
intentionally design a counterexample.) This makes the multi-level intersec-
tion hierarchy diagram smaller in size and lower in visual complexity than
the equivalent three-level intersection hierarchy.

6 Evaluation

We will use the customer ontology of our marketing project to evaluate the
design of the multi-level ontology versus the other designs. In our Web marketing
project, we have collected 301,109 valid records of person’s information. A record
of information is considered valid when it has a valid email address and at least
one expressed interest. Some of the information is expressed in foreign characters,
which we ignore. After filtering, we have 274,665 records. However, most people
also provide more information such as their age, gender and marital status.
Regarding these as three dimensions for PERSON, we constructed the customer
ontology for our project and show how the ordered dimensions tree hierarchy,
the three-level intersection hierarchy, and the multi-level intersection hierarchy
representation will perform, respectively.

The dimensions of AGE, GENDER and MARITAL STATUS have 6, 2 and 6
options respectively. Each record is represented as an instance of a corresponding
classification (node) in the ontology. However, some nodes only contain fewer
than 100 records. For marketing purposes, we ignore such nodes which do not
represent useful information.

Using the design of ordered dimensions, we have the ontology as in Figure 6(a).
The blank boxes stand for nodes without enough instances, and are not created.
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In this figure, each node represents a meaningful customer classification from
a marketing point of view, with the corresponding number of persons in our
database. For instance, there are 23709 records for those who are males whose
ages are between 10 and 19, whose marital status is not specified.

The tree hierarchy in Figure 6(a) has 62 nodes and 61 IS-A links and the
visual complexity of 0.98. However, using this hierarchy, when trying to represent
all the customer concepts with marketing knowledge, some of the concepts are
not represented by a single node. To represent such a concept, multiple nodes,
distributed in different parts of the hierarchy of Figure 6(a), have to be collected.
For example, due to the order of the dimensions, to represent the concept AGE
20-29, 11 nodes, structured in 2 subtrees in Figure 6(a), are needed, as shown
in Figure 7(a). Moreover, to represent the concept MALE and DIVORCED, 4
nodes need to be collected, as shown in Figure 7(b).

The number of possible concepts with one dimension is 2+6+6 = 14 and with
two dimensions is 2×6+2×6+6×6 = 60. Hence the number of possible concepts
with one or two dimensions is 74. We are not considering here the concepts
with three dimensions, since they are properly represented in Figure 6(a) by a
single node leaf. Among those 74 concepts, 14 can be found, in levels 2 and 3 in
Figure 6(a), as corresponding single nodes. Since 48 of them do not have enough
instances, there are 74 − 14 − 48 = 12 concepts which are not represented by
a single node. Figure 6(b) summarizes those 12 concepts needed in addition to
Figure 6(a) to represent every needed marketing knowledge concept. Every one
of these 12 concepts needs to be represented by a group of nodes, distributed
in various parts of Figure 6(a), shown as its children as in the Figure 7. For
each concept in Figure 6(b), the number of these nodes is listed, adding up to
76 nodes. Note that Figures 7(a) and 7(b) show only the expansions of the
first node and the sixth node in Figure 6(b), respectively. Thus, the number of
nodes representing all the relevant concepts in the customer tree hierarchy is
62 + 76 = 138.

In the design of the multi-level intersection hierarchy, we get the ontology
hierarchy in Figure 8. There are 14 option nodes. The third level has 21 inter-
section nodes, each of which has 2 IS-A links to option nodes. The fourth level
has 47 intersection nodes combining three dimensions. Out of 72 possible inter-
section nodes, 25 contain fewer than 100 records and are not represented. Thus,
this design has 1 + 14 + 21 + 47 = 83 nodes and 150 IS-A links. The visual
complexity of the multi-level intersection hierarchy is 150/83 = 1.81.

For the three-level intersection hierarchy, the figure is too large to be shown
here. However, the figure is a modification of Figure 8 for the multi-level inter-
section hierarchy. The only difference, is that all the 47 nodes in the fourth level
are moved to level 3 and are directly connected to the option nodes. Thus, we
have 68 intersection nodes at level 3. The total nodes number again is 83, but
the number of IS-A links is 197. The extra 47 IS-A links are since each of the 47
nodes has 3 IS-A links. The visual complexity is 197/83 = 2.37.

In summary, the usage of intersection nodes insures that every relevant cus-
tomer concept is represented by one single node in the hierarchy. The three-level
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Fig. 7. The nodes collection samples in the Figure 6(b)

and multi-level intersection hierarchy have the same number of nodes. However,
the multi-level intersection hierarchy has fewer links and lower visual complexity
than the three-level intersection hierarchy.

In the design of the customer tree hierarchy, consisting of several trees (see
Figure 6), there are 138 nodes. Comparing with the 83 nodes in the other two
designs, the size is 66% bigger. This design has a lower visual complexity, since
it is a forest of 13 trees. However, the measurement of visual complexity is
secondary to the size, in this case.

7 Discussion

In principle, the mission of a general purpose ontology is to represent the real
world and facilitate the exchange of information between heterogeneous sys-
tems. In this view, one would need to create every single intersection in the cus-
tomer hierarchy, whether we have additional information about it or not, simply
because it may be needed for information exchange. However, in our application
ontology this would lead to an unreasonably large structure. As a matter of fact,
Sowa [14], page 53, writes that “limited ontologies will always be useful for single
applications in highly specialized domains. But to share knowledge with other
applications, an ontology must be embedded within a more general framework.”
As a single application ontology, our marketing ontology has to serve its appli-
cation as well as possible. Thus, it should be an economical representation that
includes only nodes for which marketing knowledge is relevant. Also, for this spe-
cific application, there is no order whatsoever between any pair of dimensions.
Thus, intersections need to be applied universally. This is not necessarily true
for other application ontologies.
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Thus, we omit from our ontology information that may be “inferred.” The
principle of creating an ontology that is an economical representation goes back
to the first semantic networks [1]. A major reason for storing attributes at a
concept high up in a semantic network hierarchy was to eliminate duplication
of information. Whenever any such attribute was needed at a lower level, it was
inherited down.

The major difference in our case is that we are not omitting attributes at
lower levels, we are omitting the lower levels altogether. Instead of using inheri-
tance to instantiate the representation whenever needed, we are allowing the on
demand creation of new intersection concepts which are children of two or more
existing concepts. Similarly, [29] writes about dynamic additions in an ontology:
“Note that according to this definition, an ontology includes not only the terms
that are explicitly defined in it, but also terms that can be inferred using rules.”
Thus, one could view our approach as implementing a global inference rule which
is triggered by existing data and infers new concepts.

One problem which exists in the design of ontologies is how to forbid the rep-
resentation of an impossible combination. In our intersection ontology design,
this translates into the question how to forbid impossible intersections. For
example, we should not represent an intersection node TEENAGE MARRIED
WOMAN since it is illegal for a teenager to get married.

How can we prevent impossible combinations in our intersection ontology?
Note that our ontology’s intersections are created on demand, based on available
marketing knowledge. There should be no such impossible combinations in the
available marketing knowledge, and thus no such intersection should be created.
If, however, such an intersection is created, it comes from erroneous data and
can be used for auditing errors in the given marketing knowledge, as we did in
[23].

8 Conclusions

We have introduced an application-oriented ontology for marketing knowledge,
based on the introduction of intersection concepts on demand. Instead of impos-
ing an order on the classification dimensions which is satisfactory for some pur-
poses (and users) but not for others, we completely eliminate ordered dimensions.
Instead, we consistently use intersections of options for the various dimensions.

We described the development of an application ontology for customer clas-
sifications in a marketing knowledge base. This ontology needed to conform to
a number of requirements. First and foremost, we wanted to make it easy to
represent in the ontology, knowledge about likely buying behavior of classes of
customers by a single (or a few) links from customer concepts to product con-
cepts.

The intersection ontology representation satisfies this purpose because it
allows the representation of “buys” relationships by single links whenever this
is warranted by the marketing knowledge. Yet, our representation does not pro-
duce a combinatorial explosion of all possible intersection nodes. Rather, it only
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represents the concepts for customer classes which are necessary as sources for
known “buys” relationships.

In the multi-level intersection ontology representation, intersection nodes of
many option nodes may be placed at various levels. These nodes may have IS-A
links to other intersection nodes as well as to option nodes. These IS-A links
may be used for property inheritance, as in other concept hierarchies.

The multi-level hierarchy representation fulfills a secondary requirement that
we have for ontologies, namely that they can be represented by diagrams of rela-
tively low size and visual complexity. This representation typically requires lower
visual complexity relative to the three-level intersection hierarchy. As described
in Section 6, in the evaluation based on our marketing project, the multi-level
representation has a 24% lower visual complexity than the three-level represen-
tation. Moreover, its size is 40% smaller than the size of the ordered dimensions
representation. In conclusion, we showed that for the marketing domain an eco-
nomical intersection ontology may be created by inserting intersections of options
of the various classification dimensions on demand. Such a representation may
also be proper for other applications.
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Abstract. In this work we formalize the notion of a ring signature,
which makes it possible to specify a set of possible signers without re-
vealing which member actually produced the signature. Unlike group sig-
natures, ring signatures have no group managers, no setup procedures,
no revocation procedures, and no coordination: any user can choose any
set of possible signers that includes himself, and sign any message by
using his secret key and the others’ public keys, without getting their
approval or assistance. Ring signatures provide an elegant way to leak
authoritative secrets in an anonymous way, to sign casual email in a way
that can only be verified by its intended recipient, and to solve other
problems in multiparty computations.
Our main contribution lies in the presentation of efficient constructions
of ring signatures; the general concept itself (under different terminology)
was first introduced by Cramer et al. [CDS94]. Our constructions of such
signatures are unconditionally signer-ambiguous, secure in the random
oracle model, and exceptionally efficient: adding each ring member in-
creases the cost of signing or verifying by a single modular multiplication
and a single symmetric encryption. We also describe a large number of
extensions, modifications and applications of ring signatures which were
published after the original version of this work (in Asiacrypt 2001).

1 Introduction

The general notion of a group signature scheme was introduced in 1991 by
Chaum and van Heyst [CV91]. In such a scheme, a trusted group manager pre-
defines certain groups of users and distributes specially designed keys to their
members. Individual members can then use these keys to anonymously sign
messages on behalf of their group. The signatures produced by different group
members look indistinguishable to their verifiers, but not to the group manager
who can revoke the anonymity of misbehaving signers.

In this work we formalize the related notion of ring signature schemes. These
are simplified group signature schemes that have only users and no managers (we
call such signatures “ring signatures” instead of “group signatures” since rings
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are geometric regions with uniform periphery and no center).3 Group signatures
are useful when the members want to cooperate, while ring signatures are useful
when the members do not want to cooperate. Both group signatures and ring
signatures are signer-ambiguous, but in a ring signature scheme there are no
prearranged groups of users, there are no procedures for setting, changing, or
deleting groups, there is no way to distribute specialized keys, and there is no
way to revoke the anonymity of the actual signer (unless he decides to expose
himself). Our only assumption is that each member is already associated with
the public key of some standard signature scheme such as RSA. To produce a
ring signature, the actual signer declares an arbitrary set of possible signers that
must include himself, and computes the signature entirely by himself using only
his secret key and the others’ public keys. In particular, the other possible signers
could have chosen their RSA keys only in order to conduct e-commerce over the
internet, and may be completely unaware that their public keys are used by a
stranger to produce such a ring signature on a message they have never seen and
would not wish to sign.

The notion of ring signatures is not completely new, but previous references
do not crisply formalize the notion, and propose constructions that are less effi-
cient and/or that have different, albeit related, objectives. They tend to describe
this notion in the context of general group signatures or multiparty construc-
tions, which are quite inefficient. For example, Chaum et al. [CV91]’s schemes
three and four, and the two signature schemes in Definitions 2 and 3 of Ca-
menisch’s paper [Cam97] can be viewed as ring signature schemes. However the
former schemes require zero-knowledge proofs with each signature, and the latter
schemes require as many modular exponentiations as there are members in the
ring. Cramer et al. [CDS94] show how to produce witness-indistinguishable in-
teractive proofs. Such proofs could be combined with the Fiat-Shamir technique
to produce ring signature schemes. Similarly, DeSantis et al. [SCPY94] show that
interactive SZK for random self-reducible languages are closed under monotone
boolean operations, and show the applicability of this result to the construction
of a ring signature scheme (although they don’t use this terminology).

The direct construction of ring signatures proposed in this paper is based on
a completely different idea, and is exceptionally efficient for large rings (adding
only one modular multiplication and one symmetric encryption per ring member
both to generate and to verify such signatures). The resultant signatures are
unconditionally signer-ambiguous and secure in the random oracle model. This
model, formalized in [BR93], assumes that all parties have oracle access to a
truly random function.

There have been several followup papers on the theory and applications of
ring signatures. We summarize these results in Section 7.

3 Hanatani and Ohta have pointed out that the idea of signing messages in the form of
a ring dates back at least as far as 1756, the middle of Edo period, in Japan [HO05].
In that time, a group of farmers would sign their names in the form of a ring so as
to conceal the identity of the group leader. (Had they signed sequentially, the leader
would be expected to be the first on the list.)
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2 Definitions and Applications

2.1 Ring Signatures

Terminology: We call a set of possible signers a ring. We call the ring member
who produces the actual signature the signer and each of the other ring members
a non-signer.

We assume that each possible signer is associated (via a PKI directory or
certificate) with a public key Pk that defines his signature scheme and specifies
his verification key. The corresponding secret key (which is used to generate reg-
ular signatures) is denoted by Sk. The general notion of a ring signature scheme
does not require any special properties of these individual signing schemes, but
our simplest construction assumes that they use trapdoor one-way permutations
(such as the RSA functions) to generate and verify signatures.

A ring signature scheme is defined by two procedures:

– ring-sign(m, P1, P2, . . . , Pr, s, Ss) which produces a ring signature σ for the
message m, given the public keys P1, P2, . . . , Pr of the r ring members,
together with the secret key Ss of the s-th member (who is the actual signer).

– ring-verify(m, σ) which accepts a message m and a signature σ (which
includes the public keys of all the possible signers), and outputs either true
or false.

A ring signature scheme is set-up free: The signer does not need the knowl-
edge, consent, or assistance of the other ring members to put them in the ring;
all he needs is knowledge of their regular public keys. Different members can
use different independent public key signature schemes, with different key and
signature sizes. Verification must satisfy the usual soundness and completeness
conditions, but in addition we want the signatures to be signer-ambiguous in
the sense that a signature should leek no information about the identity of the
signer. This anonymity property can be either computational or unconditional.
Our main construction provides unconditional anonymity in the sense that even
an infinitely powerful adversary with access to an unbounded number of chosen-
message signatures produced by the same ring member cannot guess his identity
with any advantage, and cannot link additional signatures to the same signer.

Note that the size of any ring signature must grow linearly with the size of
the ring, since it must list the ring members; this is an inherent disadvantage of
ring signatures as compared to group signatures that use predefined groups.

2.2 Leaking Secrets

To motivate the title for this paper, suppose that Bob (also known as “Deep
Throat”) is a member of the cabinet of Lower Kryptonia, and that Bob wishes
to leak a juicy fact to a journalist about the escapades of the Prime Minister,
in such a way that Bob remains anonymous, yet such that the journalist is
convinced that the leak was indeed from a cabinet member.
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Bob cannot send to the journalist a standard digitally signed message, since
such a message, although it convinces the journalist that it came from a cabinet
member, does so by directly revealing Bob’s identity.

It also doesn’t work for Bob to send the journalist a message through a
standard “anonymizer” [Ch81, Ch88, GRS99], since the anonymizer strips off all
source identification and authentication: the journalist would have no reason to
believe that the message really came from a cabinet member at all.

A standard group signature scheme does not solve the problem, since it re-
quires the prior cooperation of the other group members to set up, and leaves
Bob vulnerable to later identification by the group manager, who may be con-
trolled by the Prime Minister.

The correct approach is for Bob to send the story to the journalist (through
an anonymizer), signed with a ring signature scheme that names each cabinet
member (including himself) as a ring member. The journalist can verify the
ring signature on the message, and learn that it definitely came from a cabinet
member. He can even post the ring signature in his paper or web page, to prove to
his readers that the juicy story came from a reputable source. However, neither
he nor his readers can determine the actual source of the leak, and thus the
whistleblower has perfect protection even if the journalist is later forced by a
judge to reveal his “source” (the signed document).

2.3 Designated Verifier Signature Schemes

A designated verifier signature scheme is a signature scheme in which signatures
can only be verified by a single “designated verifier” chosen by the signer. It
can be viewed as a “light signature scheme” which can authenticate messages
to their intended recipients without having the nonrepudiation property. This
concept was first introduced by Jakobsson, Sako and Impagliazzo at Eurocrypt
96 [JSI96].

A typical application is to enable users to authenticate casual emails without
being legally bound to their contents. For example, two companies may exchange
drafts of proposed contracts. They wish to add to each email an authenticator,
but not a real signature which can be shown to a third party (immediately or
years later) as proof that a particular draft was proposed by the other company.

One approach would be to use zero knowledge interactive proofs, which can
only convince their verifiers. However, this requires interaction and is difficult
to integrate with standard email systems and anonymizers. We can use non-
interactive zero knowledge proofs, but then the authenticators become signatures
which can be shown to third parties. Another approach is to agree on a shared
secret symmetric key k, and to authenticate each contract draft by appending a
message authentication code (MAC) for the draft computed with key k. A third
party would have to be shown the secret key to validate a MAC, and even then
he wouldn’t know which of the two companies computed the MAC. However,
this requires an initial set-up procedure to generate the secret symmetric key k.

A designated verifier scheme provides a simple solution to this problem: com-
pany A can sign each draft it sends, naming company B as the designated verifier.
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This can be easily achieved by using a ring signature scheme with companies A
and B as the ring members. Just as with a MAC, company B knows that the
message came from company A (since no third party could have produced this
ring signature), but company B cannot prove to anyone else that the draft of the
contract was signed by company A, since company B could have produced this
draft by itself. Unlike the case of MAC’s, this scheme uses public key cryptogra-
phy, and thus A can send unsolicited email to B signed with the ring signature
without any preparations, interactions, or secret key exchanges. By using our
proposed ring signature scheme, we can turn standard signature schemes into
designated verifier schemes, which can be added at almost no cost as an extra
option to any email system.

3 Efficiency of Our Ring Signature Scheme

When based on Rabin or RSA signatures, our ring signature scheme is particu-
larly efficient:

– signing requires one modular exponentiation, plus one or two modular mul-
tiplications for each non-signer.

– verification requires one or two modular multiplications for each ring mem-
ber.

In essence, generating or verifying a ring signature costs the same as generat-
ing or verifying a regular signature plus an extra multiplication or two for each
non-signer, and thus the scheme is truly practical even when the ring contains
hundreds of members. It is two to three orders of magnitude faster than Ca-
menisch’s scheme, whose claimed efficiency is based on the fact that it is 4 times
faster than earlier known schemes (see bottom of page 476 in his paper [Cam97]).
In addition, a Camenisch-like scheme uses linear algebra in the exponents, and
thus requires all the members to use the same prime modulus p in their indi-
vidual signature schemes. One of our design criteria is that the signer should be
able to assemble an arbitrary ring without any coordination with the other ring
members. In reality, if one wants to use other users’ public keys, they are much
more likely to be RSA keys, and even if they are based on discrete logs, different
users are likely to have different moduli p. The only realistic way to arrange a
Camenisch-like signature scheme is thus to have a group of consenting parties.

4 The Proposed Ring Signature Scheme (RSA Version)

Suppose that Alice wishes to sign a message m with a ring signature for the
ring of r individuals A1, A2, . . . , Ar, where the signer Alice is As, for some
value of s, 1 ≤ s ≤ r. To simplify the presentation and proof, we first describe a
ring signature scheme in which all the ring members use RSA [RSA78] as their
individual signature schemes. The same construction can be used for any other
trapdoor one way permutation, but we have to modify it slightly in order to
use trapdoor one way functions (as in, for example, Rabin’s signature scheme
[Rab79]).
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4.1 RSA Trapdoor Permutations

Each ring member Ai has an RSA public key Pi = (ni, ei) which specifies the
trapdoor one-way permutation fi of Zni :

fi(x) = xei (mod ni) .

We assume that only Ai knows how to compute the inverse permutation
f−1

i efficiently, using trapdoor information (i.e., f−1
i (y) = ydi(mod ni), where

di = e−1
i (mod φ(ni)) is the trapdoor information). This is the original Diffie-

Hellman model [DH76] for public-key cryptography.

Extending trapdoor permutations to a common domain
The trapdoor RSA permutations of the various ring members will have do-

mains of different sizes (even if all the moduli ni have the same number of bits).
This makes it awkward to combine the individual signatures, and thus we ex-
tend all the trapdoor permutations to have as their common domain the same
set {0, 1}b, where 2b is some power of two which is larger than all the moduli
ni’s.

For each trapdoor permutation f over Zn, we define the extended trapdoor
permutation g over {0, 1}b in the following way. For any b-bit input m define
nonnegative integers q and r so that m = qn + r and 0 ≤ r < n. Then

g(m) =
{

qn + f(r) if (q + 1)n ≤ 2b

m else.

Intuitively, g is defined by using f to operate on the low-order digit of the n-ary
representation of m, leaving the higher order digits unchanged. The exception is
when this might cause a result larger than 2b−1, in which case m is unchanged.
If we choose a sufficiently large b (e.g. 160 bits larger than any of the ni’s),
the chance that a randomly chosen m is unchanged by the extended g becomes
negligible. (A stronger but more expensive approach, which we don’t need, would
use instead of g(m) the function g′(m) = g((2b − 1)− g(m)) which can modify
all its inputs). The function g is clearly a permutation over {0, 1}b, and it is a
one-way trapdoor permutation since only someone who knows how to invert f
can invert g efficiently on more than a negligible fraction of the possible inputs.

4.2 Symmetric Encryption

We assume the existence of a publicly defined symmetric encryption algorithm
E such that for any key k of length l, the function Ek is a permutation over b-bit
strings. Here we use the ideal cipher model which assumes that all the parties
have access to an oracle that provides truly random answers to new queries of
the form Ek(x) and E−1

k (y), provided only that they are consistent with previous
answers and with the requirement that Ek be a permutation. It was shown in
[BSS02] that the ideal cipher model can be reduced to the random oracle model
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without almost any efficiency loss.4 For simplicity we use the ideal cipher model
in this presentation.

4.3 Hash Functions

We assume the existence of a publicly defined collision-resistant hash function h
that maps arbitrary inputs to strings of length l, which are used as keys for E.
We model h as a random oracle. (Since h need not be a permutation, different
queries may have the same answer, and we do not consider “h−1” queries.)

4.4 Combining Functions

We define a family of keyed “combining functions” Ck,v(y1, y2, . . . , yr) which
take as input a key k, an initialization value v, and arbitrary values y1, y2, . . . ,
yr in {0, 1}b. Each such combining function uses Ek as a sub-procedure, and
produces as output a value z in {0, 1}b such that given any fixed values for k
and v, we have the following properties.

1. Permutation on each input: For each s ∈ {1, . . . , r}, and for any fixed
values of all the other inputs yi, i �= s, the function Ck,v is a one-to-one
mapping from ys to the output z.

2. Efficiently solvable for any single input: For each s ∈ {1, . . . , r}, given
a b-bit value z and values for all inputs yi except ys, it is possible to efficiently
find a b-bit value for ys such that Ck,v(y1, y2, . . . , yr) = z.

3. Infeasible to solve verification equation without trapdoors: Given k,
v, and z, it is infeasible for an adversary to solve the equation

Ck,v(g1(x1), g2(x2), . . . , gr(xr)) = z (1)

for x1, x2, . . . , xr, (given access to each gi, and to Ek) if the adversary can’t
invert any of the trapdoor functions g1, g2, . . . , gr.

For example, the function

Ck,v(y1, y2, . . . , yr) = y1 ⊕ y2 ⊕ · · · ⊕ yr

(where ⊕ is the exclusive-or operation on b-bit words) satisfies the first two of the
above conditions, and can be kept in mind as a candidate combining function.
Indeed, it was the first one we tried. But it fails the third condition since for any
choice of trapdoor one-way permutations gi, it is possible to use linear algebra
when r is large enough to find a solution for x1, x2, . . . , xr without inverting any
of the gi’s. The basic idea of the attack is to choose a random value for each xi,
and to compute each yi = gi(xi) in the easy forward direction. If the number of
values r exceeds the number of bits b, we can find with high probability a subset
4 It was shown in [LR88] that the ideal cipher model can always be reduced to the

random oracle model (with some efficiency loss).
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of the yi bit strings whose XOR is any desired b-bit target z. However, our goal
is to represent z as the XOR of all the values y1, y2, . . . , yr rather than as a XOR
of a random subset of these values. To overcome this problem, we choose for each
i two random values x′

i and x′′
i , and compute their corresponding y′

i = gi(x′
i)

and y′′
i = gi(x′′

i ). We then define y′′′
i = y′

i ⊕ y′′
i , and modify the target value to

z′ = z⊕y′
1⊕y′

2, . . .⊕y′
r. We use the previous algorithm to represent z′ as a XOR

of a random subset of y′′′
i values. After simplification, we get a representation

of the original z as the XOR of a set of r values, with exactly one value chosen
from each pair (y′

i, y
′′
i ). By choosing the corresponding value of either x′

i or x′′
i ,

we can solve the verification equation without inverting any of the trapdoor one-
way permutations gi. (One approach to countering this attack, which we don’t
explore further here, is to let b grow with r.)

Even worse problems can be shown to exist in other natural combining func-
tions such as addition mod 2b. Assume that we use the RSA trapdoor func-
tions gi(xi) = x3

i (mod ni) where all the moduli ni have the same size b. It is
known [HW79] that any nonnegative integer z can be efficiently represented as
the sum of exactly nine nonnegative integer cubes x3

1 + x3
2 + . . . + x3

9. If z is
a b-bit target value, we can expect each one of the x3

i to be slightly shorter
than z, and thus their values are not likely to be affected by reducing each x3

i

modulo the corresponding b-bit ni. Consequently, we can solve the verification
equation (x3

1 mod n1) + (x3
2 mod n2) . . . + (x3

9 mod n9) = z(mod 2b) with nine
RSA permutations without inverting any one of them.

Our proposed combining function utilizes the symmetric encryption function
Ek as follows:

Ck,v(y1, y2, . . . , yr) = Ek(yr ⊕Ek(yr−1⊕Ek(yr−2 ⊕Ek(. . .⊕Ek(y1 ⊕ v) . . .)))) .

This function is applied to the sequence (y1, y2, . . . , yr), where yi = gi(xi), as
shown in Figure 1.

y1=g1(x1)

Ek
v

x1

…Ek z

y2=g2(x2)

x2

Ek

yr=gr(xr)

xr

Fig. 1. An illustration of the proposed combining function

This function is clearly a permutation on each input, since the XOR and Ek

functions are permutations. In addition, it is efficiently solvable for any single
input since knowledge of k makes it possible to run the evaluation forwards from
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the initial v and backwards from the final z in order to uniquely compute any
missing value yi.

This function can be used to construct a signature scheme as follows: In
order to sign a message m, set k = h(m), where h is some predetermined hash
function, and output x1, . . . , xr such that Ck,v(g1(x1), g2(x2), . . . , gr(xr)) = v.
Notice that forcing the output z to be equal to the input v, bends the line into
the ring shape shown in Fig. 2.

A slightly more compact ring signature variant can be obtained by always
selecting 0 as the “glue value” v. This variant is also secure, but we prefer the
total ring symmetry of our main proposal.

y1=g1(x1)

Ek Ek

yr=gr(xr) Ek

y3=g3(x3)

z=v

Ek

Ek Ek

Ek

y2=g2(x2)

Fig. 2. Ring signatures

4.5 The Ring Signature Scheme

We now formally describe the signature generation and verification procedures:
Generating a ring signature:

Given the message m to be signed, a sequence of public keys P1, P2, . . . , Pr

of all the ring members (each public key Pi specifies a trapdoor permutation gi),
and a secret key Ss (which specifies the trapdoor information needed to compute
g−1

s ), the signer computes a ring signature as follows.

1. Determine the symmetric key: The signer first computes the symmetric
key k as the hash of the message m to be signed:

k = h(m)

(a more complicated variant computes k as h(m, P1, . . . , Pr); however, the
simpler construction is also secure.)
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2. Pick a random glue value: Second, the signer picks an initialization (or
“glue”) value v uniformly at random from {0, 1}b.

3. Pick random xi’s: Third, the signer picks random xi for all the other ring
members 1 ≤ i ≤ r, where i �= s, uniformly and independently from {0, 1}b,
and computes

yi = gi(xi) .

4. Solve for ys: Fourth, the signer solves the following ring equation for ys:

Ck,v(y1, y2, . . . , yr) = v .

By assumption, given arbitrary values for the other inputs, there is a unique
value for ys satisfying the equation, which can be computed efficiently.

5. Invert the signer’s trapdoor permutation: Fifth, the signer uses his
knowledge of his trapdoor in order to invert gs on ys, to obtain xs:

xs = g−1
s (ys) .

6. Output the ring signature: The signature on the message m is defined to
be the (2r + 1)-tuple:

(P1, P2, . . . , Pr; v; x1, x2, . . . , xr) .

Verifying a ring signature:
A verifier can verify an alleged signature

(P1, P2, . . . , Pr; v; x1, x2, . . . , xr) .

on the message m as follows.

1. Apply the trapdoor permutations: First, for i = 1, 2, . . . , r the verifier
computes

yi = gi(xi) .

2. Obtain k: Second, the verifier hashes the message to compute the symmetric
encryption key k:

k = h(m) .

3. Verify the ring equation: Finally, the verifier checks that the yi’s satisfy
the fundamental equation:

Ck,v(y1, y2, . . . , yr) = v . (2)

If the ring equation (2) is satisfied, the verifier accepts the signature as valid.
Otherwise the verifier rejects.
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4.6 Security

The identity of the signer is unconditionally protected with our ring signature
scheme. To see this, note that for each k and v the ring equation has exactly
(2b)(r−1) solutions, and all of them can be chosen by the signature generation
procedure with equal probability, regardless of the signer’s identity. This ar-
gument does not depend on any complexity-theoretic assumptions or on the
randomness of the oracle (which determines Ek).

The soundness of the ring signature scheme must be computational, since
ring signatures cannot be stronger than the individual signature scheme used by
the possible signers.

Theorem 1. The above ring signature scheme is secure against adaptive chosen
message attacks in the ideal cipher model (assuming each public key specifies a
trapdoor one-way permutation).

We need to prove that in the ideal cipher model, any forging algorithm A
which on input (P1, . . . , Pr) can generate with non-negligible probability a new
ring signature for m∗ by analyzing polynomially many ring signatures for other
chosen messages m �= m∗, can be turned into an algorithm B that inverts one of
the trapdoor one-way permutations corresponding to (P1, . . . , Pr) on a random
input, with non-negligible probability.

The basic idea behind the proof is the following: We first show that the
ring signing oracle “does not help” A in generating a new signature. This is
done by showing that the ring signing oracle can be simulated by an efficient
algorithm that has control over the oracles h, E and E−1. We then show that any
forgery algorithm (with no ring signing oracle) can be used to invert one of the
trapdoor permutations g1, . . . , gr corresponding to the public keys (P1, . . . , Pr),
on a random input y. This is done by showing how to control the oracles h, E,
and E−1, so as to force the “gap” between the output and input values of two
cyclically consecutive Ek’s along the ring equation of the forgery to be equal to
the value y. This forces the forger to close the gap by providing the corresponding
g−1

i (y) in the generated signature (for some i ∈ {1, . . . , r}). Since y is a random
value which is not known to the forger, the forger cannot “recognize the trap”
and refuse to sign the corresponding messages.

In what follows, we prove Theorem 1 by formalizing the above basic idea.

Proof of Theorem 1: Assume that there exists a forging algorithm A, that
succeeds in creating a ring forgery with non-negligible probability. More specif-
ically, algorithm A takes as input a set of random public keys (P1, P2, . . . , Pr)
(but not any of the corresponding secret keys), where each Pi specifies a trap-
door one-way permutation gi. Algorithm A is also given oracle access to h, E,
E−1, and to a ring signing oracle. It can work adaptively, querying the oracles
at arguments that may depend on previous answers. Eventually, it produces a
valid ring signature on a new message that was not presented to the ring signing
oracle, with a non-negligible probability (over the random answers of the oracles
and its own random coin tosses).
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We show that A can be turned into an algorithm B, that takes as input a
set of random trapdoor one-way permutations g1, . . . , gr and a random value
y ∈ {0, 1}b, and outputs with non-negligible probability a value g−1

i (y) for some
i ∈ {1, . . . , r}.

Remark. Note that in order to get a contradiction, we actually need to con-
struct an algorithm B′ that takes as input a single random trapdoor one-way
permutation g and a random element y and outputs with non-negligible prob-
ability g−1(y). Such an algorithm B′ can be easily constructed from algorithm
B as follows. Given a trapdoor one-way permutation g and a random element
y, algorithm B′ chooses at random an element j ∈ {1, . . . , r}, and random trap-
door permutations g1, . . . , gr such that gj � g, and runs algorithm B on input
(g1, . . . , gr) and y. Algorithm B outputs with non-negligible probability a value
of the form g−1

i (y) for some i. Since j is uniformly chosen in {1, . . . , r} and
since r is polynomially bounded, it follows that B outputs with non-negligible
probability the value g−1

j (y) = g−1(y), as desired. Thus, it suffices to construct
algorithm B.

Algorithm B will be constructed in two steps. We first show how to convert
the (adaptive) forger A into an (oblivious) forger A′ that does not make any
queries to the ring signing oracle. We then show how A′ can be converted into
an inverter algorithm B.

The construction of A′. Algorithm A′ uses A as a black-box, while simulating
its ring signing oracle, as follows. Every time that A queries its ring signing oracle
with a message m, algorithm A′ will simulate the response by providing a random
vector (v, x1, x2, . . . , xr) as a ring signature of m. It then adjusts the random
answers to queries of the form Eh(m) and E−1

h(m), to support the correctness of
the ring equation for these messages. Namely, A′ chooses randomly r− 1 values
z1, . . . , zr−1, lets z0 = zr = v, and (mentally) sets Eh(m)(zi⊕ gi+1(xi+1)) = zi+1

and E−1
h(m)(zi+1) = zi ⊕ gi+1(xi+1). Whenever A queries its encryption oracle

with query of the form Eh(m)(zi ⊕ gi+1(xi+1)), algorithm A′ does not forward
this query to the encryption oracle; rather, it pretends that the answer to this
query was zi+1 and feeds this value as a response to A. Similarly, whenever A
queries its decryption oracle with a query of the form E−1

h(m)(zi+1), algorithm A′

does not forward this query to the decryption oracle; rather, it pretends that the
answer to this query was zi⊕ gi+1(xi+1). Once A generates an output, A′ copies
it as its own output.

Lemma 1. A′ succeeds in forging a ring signature with non-negligible proba-
bility, assuming that A succeeds in forging a (new) ring signature with non-
negligible probability.

Proof of Lemma 1: We show that the probability that A′ succeeds in forging
a ring signature is essentially the same as probability in which A succeeds in
forging a (new) ring signature. For this it suffices to prove that the view of A
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when interacting with its original oracles is (statistically) indistinguishable from
the view of A, when interacting with the following modified oracles:

1. The ring signature oracle is modified by replacing it with an oracle that on
input any message m outputs a totally random vector (v, x1, x2, . . . , xr).

2. The encryption and decryption oracles are modified by restricting Eh(m)(zi⊕
gi+1(xi+1)) = zi+1 and restricting E−1

h(m)(zi+1) = zi ⊕ gi+1(xi+1), where m

is any message that was signed by the (modified) ring signing oracle, and
(z0, z1, . . . , zr) are the associated random values chosen by A′.

The main thing to realize when arguing the above is that A cannot ask an oracle
query of the form Eh(m)(zi ⊕ gi+1(xi+1)) or E−1

h(m)(zi+1), before providing m to
the signing oracle (except with negligible probability). This is so since all the
values z0 = v and z1, . . . , zr−1 are chosen randomly by A′ after A sends m as
a query to the ring signing oracle, and thus cannot be guessed in advance by
A.5 ��
The construction of B. Algorithm B, on input g1, . . . , gr and a random value
y ∈ {0, 1}b, uses A′ on input (g1, . . . , gr) as a black-box (while simulating its
oracles), in order to find a value g−1

i (y), for some i ∈ {1, . . . , r}.
We first note that A′ must query the oracle h with the message that it is

actually going to forge (otherwise the probability of satisfying the ring equation
becomes negligible). Assume that, with non-negligible probability, A′ forges the
j’th message that it sends to the oracle h. We denote this message by m∗.
Algorithm B begins by guessing randomly this index j. Note that B guesses the
correct value with non-negligible probability (since A′ makes in total at most
polynomially many queries to the oracle h).

Recall that A′ has access to three oracles: h, E, E−1. Algorithm B simulates
the oracle h in the straightforward manner: Whenever A makes a query to h, the
query is answered by a uniformly chosen value (unless this query has previously
appeared, in which case it is answered the same way as it was before, to ensure
consistency).

Whenever A makes a query to Ek or E−1
k , algorithm B first checks whether

k = h(m∗) (where m∗ is the j’th query that A sends the oracle h). If k �= h(m∗)
(or if A has not yet queried its j’th query to the oracle h), then B simulates
these oracles in the straightforward manner. Namely, each query to Ek or E−1

k is
answered randomly, unless the value of this query has already been determined
5 Note that A could have queried its random oracle h with the message m before

sending m to the signing oracle, and thus could have queried Eh(m) and E−1
h(m)

with arbitrary messages of its choice. However, since A is polynomially bounded,
it sends at most polynomially many queries. Thus, the probability that any one of
these queries is of the form Eh(m)(zi ⊕ gi+1(xi+1)) or E−1

h(m)
(zi+1) is negligible. Also,

notice that A′ never sends queries of the form Eh(m)(zi ⊕ gi+1(xi+1)) or E−1
h(m)(zi+1)

to his oracles. This follows from the fact that A cannot send oracle queries of this
form before providing m to the signing oracle (except with negligible probability),
and if A sends queries of this form after sending m to the ring signing oracle, A′ does
not forward these queries to his oracles (but rather simulates the answers himself).
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by B, in which case it is answered with the predetermined value. Note that so
far, the simulated oracles are identically distributed to the real oracles, and thus
in particular A′ cannot distinguish between the real oracles and the simulated
oracles.

It remains to simulate the oracles Ek and E−1
k , for k = h(m∗). Recall that

the goal of algorithm B is to compute xi = g−1
i (y), for some i. The basic idea

is to slip this value y as the “gap” between the output and input values of two
cyclically consecutive Ek’s along the ring equation of the final forgery, which
forces A′ to close the gap by providing the corresponding xi in the generated
signature. This basic idea is carried out in the following way.

Let k = h(m∗). The forger A′ asks various Ek and E−1
k queries, obtaining

a disjoint set of pairs {(wi, zi)}t
i=1, where zi = Ek(wi). Finally A′ presents a

forgery of the form (v; x1, . . . , xr). Then with overwhelming probability there
exist {zi1 , . . . , zir} ⊆ {zi}t

i=1 such that the following holds:

1. v = zir

2. Ek(zij−1 ⊕ gj(xj)) = zij for every j ∈ {1, . . . , r}, where zi0 � v.

Without loss of generality, we may assume that for every j = 1, . . . , r, either wij

is queried in the “clockwise” Ek direction, or zij is queried in the “counterclock-
wise” E−1

k direction, but not both (because this is redundant). We distinguish
between the following three cases:

Case 1: For every j = 1, . . . , r, the value wij is queried in the “clockwise” Ek

direction.
Case 2: For every j = 1, . . . , r, the value zij is queried in the “counterclockwise”

E−1
k direction.

Case 3: Some of these queries are in the “clockwise” Ek direction and some are
in the “counterclockwise” E−1

k direction.

We next show how in each of these cases, algorithm B can simulate answers to
these queries in such a way that the ring signature of m∗ generated by A′ would
yield the value g−1

i (y) for some i ∈ {1, . . . , r}. We note that with overwhelming
probability, Ek and E−1

k are not constrained up to the point where A′ queries
the oracle h with query m∗. Thus, B will do the following immediately after A′

queries the oracle h with query m∗.

Case 1: The structure of the ring implies that there must exist j ∈ {1, . . . , r}
such that wij was queried before wij−1 , where wi0 � wir .
Assume that wij was queried before wij−1 . Then B will guess which query,
out of all the queries {wi} that are sent to Ek by A′, corresponds to wij

and which query corresponds to wij−1 (there are only polynomially many
possibilities and thus he will succeed with non-negligible probability). Next
B will provide an answer to wij−1 based on its knowledge of wij . More
precisely, B will set the output of Ek(wij−1 ) to be wij ⊕ y (so that the XOR
of the values across the gap is the desired y). All other queries are answered
randomly (unless the value of this query has already been determined by B,
in which case it is answered with the predetermined value).
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Case 2: This case is completely analogous to the previous case, and so B behaves
accordingly.

Case 3: The structure of the ring implies that there must exist j ∈ {1, . . . , r}
such that wij was queried in the “clockwise” Ek direction whereas the pro-
ceeding zij+1 was queried in the “counterclockwise” E−1

k direction (where
zir+1 � zi1). Assume that wij was queried in the “clockwise” Ek direction
whereas zij+1 was queried in the “counterclockwise” E−1

k direction.
As in the previous two cases, B will guess which query, out of all the queries
{wi} that are sent to Ek by A′, corresponds to wij , and which query, out of all
the queries {zi} that are sent to E−1

k by A′, corresponds to zij+1 . Next B will
answer the query corresponding to Ek(wij ) with a random value z and will
answer the query corresponding to E−1

k (zij+1 ) with z ⊕ y (so that the XOR
of the values across the gap is the desired y). All other queries are answered
randomly (unless the value of this query has already been determined by B,
in which case it is answered with the predetermined value).

Note that since y is a random value, the simulated oracles Ek and E−1
k

cannot be distinguished from the real oracles, and therefore, with non-negligible
probability, A′ will output a signature (v; x1, . . . , xr) to a message m∗. Moreover,
with non-negligible probability there exists i ∈ {1, . . . , r} such that gi(xi) = y,
as desired. ��

5 Our Ring Signature Scheme (Rabin Version)

Rabin’s public-key cryptosystem [Rab79] has more efficient signature verification
than RSA, since verification involves squaring rather than cubing, which reduces
the number of modular multiplications from 2 to 1. However, we need to deal
with the fact that the Rabin mapping fi(xi) = x2

i (mod ni) is not a permutation
over Z∗

ni
, and thus only one quarter of the messages can be signed, and those

which can be signed have multiple signatures.
We note that Rabin’s function, fN(x) = x2(mod N), is actually a permuta-

tion over {x : x < N
2 ∧ ( x

N ) = 1}, assuming N is a Blum integer. Moreover,
it can be easily extended to be a permutation over Z

∗
N ([G04, Section C.1]).

However this permutation is no longer so efficient, since in order to compute it
on a value x, one first needs to compute ( x

N ), which is a relatively expensive
computation. Moreover, both in the signing and verifying procedures, the num-
ber of times that a Jacobi symbol needs to be computed grows linearly with the
size of the ring.

Rather than trying to convert Rabin’s function to a permutation, we suggest
the following natural operational fix: when signing, change your last random
choice of xs−1 if g−1

s (ys) is undefined. Since only one trapdoor one-way function
has to be inverted, the signer should expect on average to try four times before
succeeding in producing a ring signature. The complexity of this search is essen-
tially the same as in the case of regular Rabin signatures, regardless of the size
of the ring.
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A more important difference is in the proof of unconditional anonymity, which
relied on the fact that all the mappings were permutations. When the gi’s are
not permutations, there can be noticeable differences between the distribution
of the xi’s that are randomly chosen, and the distribution of xs that is actually
computed in a given ring signature. This could lead to the identification of the
real signer among all the possible signers, and can be demonstrated to be a real
problem in many concrete types of trapdoor one-way functions.

Consider, for example, a trapdoor one-way function family F = {Fn}n∈N

such that every f ∈ Fn is a function from {0, 1}n to {0, 1}n, with the property
that every y in the image of f has many pre-images, one which is of the form
x = x1 . . . xn such that x1 = . . . , xlog n = 0. Moreover, assume that the trapdoor
information always finds this particular pre-image. In this case it will be easy to
distinguish the real signer from the non-signers, as the xs associated with the
real signer will have the log n most significant bits equal to 0, whereas the xi’s
associated with non-signers will be randomly chosen.

We overcome this difficulty in the case of Rabin signatures with the following
simple observation:

Observation: Let S be a given finite set of “marbles” and let B1, B2, . . . , Bn

be disjoint subsets of S (called “buckets”) such that all non-empty buckets have
the same number of marbles, and every marble in S is in exactly one bucket.
Consider the following sampling procedure: pick a bucket at random until you
find a non-empty bucket, and then pick a marble at random from that bucket.
Then this procedure picks marbles from S with uniform probability distribution.

Rabin’s functions fi(xi) = x2
i (mod ni) are extended to functions gi(xi) over

{0, 1}b in the usual way. Let the set Bs of marbles be all the b-bit numbers
u = qns + r in which r ∈ Z∗

ns
and (q + 1)ns ≤ 2b. Each marble is placed in the

bucket to which it is mapped by the extended Rabin mapping gs. In the Rabin
ring signature algorithm, each xi that corresponds to a non-signer is chosen
randomly in {0, 1}b, whereas xs that corresponds to the signer is chosen by first
choosing a random non-empty bucket and then choosing a random marble from
that bucket. The fact that each bucket contains either zero or four marbles,
together with the above observation, implies that xs is uniformly distributed in
Bs. The fact that the uniform distribution over {0, 1}b is statistically close to the
uniform distribution over Bs implies that the distribution of xi’s that correspond
to non-signers is statistically close to the distribution of xs that corresponds
to the real signer. Consequently, even an infinitely powerful adversary cannot
distinguish between signers and non-signers by analyzing actual ring signatures
produced by one of the possible signers.

6 Generalizations and Special Cases

The notion of ring signatures has many interesting extensions and special cases.
In particular, ring signatures with r = 1 can be viewed as a randomized version
of Rabin’s signature scheme (or RSA’s signature scheme): As shown in Fig. 3,
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the verification condition can be written as (x2 mod n) = v ⊕ E−1
h(m)(v). The

right hand side is essentially a hash of the message m, randomized by the choice
of v.

Ring signatures with r = 2 have the ring equation:

Eh(m)(x2
2 ⊕ Eh(m)(x2

1 ⊕ v)) = v

(see Fig. 3). A simpler ring equation (which is not equivalent but has the same
security properties) is:

(x2
1 mod n1) = Eh(m)(x2

2 mod n2)

where the modular squares are extended to {0, 1}b in the usual way. This is our
recommended method for implementing designated verifier signatures in email
systems, where n1 is the public key of the sender and n2 is the public key of the
recipient.

y2=x2 (mod n2)

z=vz=v

Ek

Ek

y1=x1 (mod n1)
2

2

y=x2(mod n)

z=v

Ek

Fig. 3. Rabin-based Ring Signatures with r = 1, 2

In regular ring signatures it is impossible for an adversary to expose the
signer’s identity. However, there may be cases in which the signer himself wants
to have the option of later proving his authorship of the anonymized email
(e.g., if he is successful in toppling the disgraced Prime Minister). Yet another
possibility is that the signer A wants to initially use {A,B,C} as the list of
possible signers, but later prove that C is not the real signer. There is a simple
way to implement these options, by choosing the xi values for the non-signers
in a pseudorandom rather than truly random way. To show that C is not the
author, A publishes the seed which pseudorandomly generated the part of the
signature associated with C. To prove that A is the signer, A can reveal a single
seed which was used to generate all the non-signers’ parts of the signature. The
signer A cannot misuse this technique to prove that he is not the signer since his
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xi is computed by applying g−1 to a random value given to him by the oracle
(where g is the trapdoor one-way permutation corresponding to his public key).
Thus, his xi is extremely unlikely to have a corresponding seed. Note that these
modified versions can guarantee only computational anonymity, since a powerful
adversary can search for such proofs of non-authorship and use them to expose
the signer.

A different approach that guarantees unbounded anonymity is to choose the
xi value for each non-signer by choosing a random wi and letting xi = f(wi),
where f is a one-way function with the additional property that each element in
the range has a pre-image under f . By demonstrating wi, the signer proves that
the i’th ring member is not the signer. Notice that the fact that the signer (which
corresponds to the s’th ring member) is computationally bounded, implies that
he cannot produce f−1(xs), and therefore he cannot prove that he himself is not
the signer. Moreover, an adversary with unlimited computational power cannot
figure out who the signer is since any xi (including xs) has a pre-image under f .

7 Followup Work

In this section we summarize the followup papers on the theory and applications
of ring signatures.

Deniable Ring Signature Schemes. In [Na02] Naor defined the notion of
Deniable Ring Authentication. This notion allows a member of an ad hoc subset
of participants (a ring) to convince a verifier that a message m is authenticated
by one of the members of the subset without revealing by which one, and the
verifier cannot convince a third party that message m was indeed authenticated.
Naor also provided an efficient protocol for deniable ring authentication based on
any secure encryption scheme. The scheme is interactive. Susilo and Mu [SM03,
SM04] constructed non interactive deniable ring authentication protocols. They
first showed in [SM03] how to use any ring signature scheme and a chameleon
hash family to construct a deniable ring signature scheme. In this construction
the verifier is assumed to be associated with a pair of secret and public keys
(corresponding to the chameleon hash family). They then showed in [SM04] how
to use any ring signature scheme and an ID based chameleon hash family [AM04]
to construct a deniable ring signature scheme. In this construction the verifier
is only assumed to have his ID published.

Threshold and General Access Ring Signature Schemes. A t-threshold
ring signature scheme is a ring signature scheme where each ring signature is
a proof that at least t members of the ring are confirming the message. In a
general access ring signature scheme, members of a set can freely choose any
family of sets including their own set, and prove that all members of some set in
the access structure have cooperated to compute the signature, without revealing
any information about which set it is.
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There have been many papers which considered these scenarios. The early
work of [CDS94] has already considered this scenario, and showed (using dif-
ferent terminology) that a witness indistinguishable proof (with witnesses that
correspond to some monotone access structure), can be combined with the Fiat-
Shamir paradigm, to obtain a monotone access ring signature scheme. The work
of Naor [Na02] also contains a construction of a general access (and in particular
threshold) ring signature scheme. His scheme is interactive and its security is
based only the existence of secure encryption schemes. There have been subse-
quent works which consider the general access scenario, such as [HS04a].

The work of Bresson et. al. [BSS02] contains a construction of a threshold ring
signature scheme (proven secure in the Random Oracle Model under the RSA
Assumption). Subsequent works which consider the threshold setting are [Wei04,
KT03, WFLW03] (where security is proved in the Random Oracle Model).

Identity-based Ring Signature Schemes. Shamir introduced in 1984 the
concept of Identity-based (ID-based) cryptography [Sha84]. The idea is that the
public-key of a user can be publicly computed from his identity (for example,
from a complete name, an email or an IP address). ID-based schemes avoid the
necessity of certificates to authenticate public keys in a digital communication
system. This is especially desirable in applications which involve a large number
of public keys in each execution, such as ring signatures.

The first to construct an ID-based ring signature scheme were Zhang and
Kim [ZK02]. Its security was analyzed in [Her03], based on bilinear pairings in
the Random Oracle Model. Subsequent constructions of ID-based ring signatures
appear in [HS04b, LW03a, AL03, TLW03, CYH04].

Identity-based Threshold Ring Signature Schemes. ID-based threshold
ring signature schemes proven secure in the Random Oracle Model, under the
bilinear pairings were constructed in [CHY04, HS04c]. This was extended in
[HS04c], to a general access setting, where any subset of users S can cooperate
to compute an anonymous signature on a message, on behalf of any family of
users that includes S.

Separable Ring Signature Schemes. A ring signature scheme is said to be
separable if all participants can choose their keys independently with different
parameter domains and for different types of signature schemes. Abe et. al.
[AOS02] were the first to address the problem of constructing a separable ring
signature scheme. They show how to construct a ring signature scheme from a
mixture of both trapdoor-type signature schemes (such as RSA based) and three-
move-type signature schemes (such as Discrete Log based). This was extended
in [LWW03] to the threshold setting.

Linkable Ring Signature Schemes. The notion of linkable ring signatures,
introduced by Liu et al. [LWW04], allows anyone to determine if two ring sig-
natures are signed by the same group member. In [LWW04] they also presented
a linkable ring signature scheme that can be extended to the threshold setting.
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Their construction was improved in [TWC+04], who presented a separable link-
able threshold ring signature scheme.

Verifiable Ring Signature Schemes. Lv and Wang [LW03b] formalized the
notion of verifiable ring signatures, which has the following additional property:
if the actual signer is willing to prove to a recipient that he signed the signature,
then the recipient can correctly determine whether this is the fact. We note that
this additional property was considered in our (original) work, and as was men-
tioned in Section 6, we showed that this property can be obtained by choosing
the xi values for the non-signers in a pseudorandom rather than a truly random
way.

Accountable Ring Signaure Schemes. An accountable ring signature
scheme, a notion introduces by Xu and Yung [XY04], ensures the following:
anyone can verify that the signature is generated by a user belonging to a set of
possible signers (that may be chosen on-the-fly), whereas the actual signer can
nevertheless be identified by a designated trusted entity. Xu and Yung [XY04]
also presented a framework for constructing accountable ring signatures. The
framework is based on a compiler that transforms a traditional ring signature
scheme into an accountable one.

Short Ring Signature Schemes. Dodis et. al. [DKNS04] were the first to
construct a ring signature scheme in which the length of an “actual signature”
is independent of the size of the ad hoc group (where an “actual signature”
does not include the group description). We note that in all other constructions
that we are aware of, the size of an “actual signature” is at least linear in the
size of the group. Their scheme was proven secure in the Random Oracle Model
assuming the existence of accumulators with one-way domain (which in turn can
be based on the Strong RSA Assumption).

Ring Authenticated Encryption. An authenticated encryption scheme allows
the verifier to recover and verify the message simultaneously. Lv et al. [LRCK04]
introduced a new type of authenticated encryption, called ring authenticated
encryption, which loosely speaking, is an authenticated encryption scheme where
the verifiability property holds with respect to a ring signature scheme.
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Abstract. Coppersmith, Franklin, Patarin, and Reiter show that given
two RSA cryptograms xe mod N and (ax + b)e mod N for known con-
stants a, b ∈ ZN , one can usually compute x in O(e log2 e) ZN -operations
(there are O(e2) messages for which the method fails).
We show that given e cryptograms ci ≡ (aix+bi)

e mod N, i = 0, 1, ...e−
1, for any known constants ai, bi ∈ ZN , one can deterministically com-
pute x in O(e) ZN -operations that depend on the cryptograms, after
a pre-processing that depends only on the constants. The complexity of
the pre-processing is O(e log2 e) ZN -operations, and can be amortized
over many instances. We also consider a special case where the over-
all cost of the attack is O(e) ZN -operations. Our tools are borrowed
from numerical-analysis and adapted to handle formal polynomials over
finite-rings. To the best of our knowledge their use in cryptanalysis is
novel.

1 Introduction

RSA is the most popular public key cryptosystem in use today in commercial
applications. It maps a message m ∈ ZN into a cryptogram c ∈ ZN using
c ≡ me mod N, where (e, N) is the public key. The secret key is d, such that
ed ≡ 1 modϕ(N), where ϕ(N) is the Euler totient function. Decryption is done
using m ≡ cd mod N. Usually N and d are at least 1000 bits long, however, e
is usually short. Many applications still use 16 bit long e.

Messages with known relations may occur for example if an attacker pre-
tends to be the recipient in a protocol that doesn’t authenticate the recipient,
and in addition the message is composed of the content concatenated with a
serial number. In that case the attacker can claim that she didn’t receive the
transmission properly and ask that it be sent again. The next transmission will
have the same content as the original but an incremented serial number. If the
increment is known we have a known relation. Other examples appear in [4].

The protocol defines the relations among messages and the relations imply
the attack method. For example, in the above example the relations are very
simple: ci ≡ (x + i)e mod N. We later show extremely efficient attack for this
case. More general linear relations require a different more complex attack.

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 187–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Related message attacks can be avoided altogether if before RSA-encryption
the message M is transformed using e.g. the OAEP function ([3]; There are
other methods and some issues are not settled yet, see [5]). This transformation
destroys the relations between messages and increases the message length.

Nevertheless it is useful to know the ramifications in case for some reason
one chooses not to use OAEP or similar methods (even though it is highly
recommended). For example RFID tags may pose tough engineering challenges of
creating very compact cryptosystems, and the trade-off must be known precisely.

In [4] it was shown that given two RSA cryptograms xe mod N, and
(ax + b)e mod N for any known constants a, b ∈ ZN one can usually compute
x in O(e log2 e) ZN -operations (there are O(e2) messages for which the method
fails, see footnote 1 in [4]).

We show that given e cryptograms ci ≡ (aix + bi)e mod N, i = 0, 1, ...e− 1,
for any known constants ai, bi ∈ ZN , such that the vectors (ai, bi), i = 0, 1, ...e−
1, are linearly independent, and ai �= 0, then one can deterministically compute
x in O(e) ZN -operations, after doing O(e log2 e) pre-computations3.

These pre-computations depend only on the constants ai and bi as determined
by the encryption protocol. For example, for the encryption protocol suggested
at the beginning of this section we have ai = 1 and bi = i. The cost of the
pre-computations can be amortized over many instances of the problem.

Our problem could be solved by using the Newton expansion of ci ≡ (aix +
bi)e mod N, renaming zj = xj and using linear algebra to find z1. However, our
method is more efficient.

We also show that in the special case where ci ≡ (ax + b · i)e mod N, i =
0, 1, ...e−1, for any known constants a, b ∈ ZN , where gcd(a, N) = gcd(b, N) =
gcd(e!, N) = 14, we show in section 3.2 how to deterministically compute x in
overall O(e) ZN -operations using

x ≡ a−1b(bee!)−1(
e−1∑
i=0

(
e− 1

i

)
· ci · (−1)e−1+i − e− 1

2
)mod N

It remains an open problem whether the new approach can improve the
general case of implicit linear dependence, i.e., suppose for known constants
ai, i = 0, 1, 2, ...k, there is a known relation

∑k
i=1 aixi = a0 among messages

x1, x2, ...xk. The current complexity of attacking this problem is O(ek/2k2) [4].
Our major attack-tools are divided-differences and finite-differences. These

tools are borrowed from numerical-analysis, and adapted to handle formal poly-

3 It appears noteworthy that while the on-line part of the attack requires just O(e)
multiplications, it would take the party doing the encryptions (the victim) O(elog(e))
multiplications to compute all the needed ciphertexts. Thus, the latter can be argued
to be the total run time (as opposed to ”cost”) of the on-line part of the attack.
With this interpretation, the attack runs only log(e) times ”faster” then that of
Coppersmith et al., rather than the log2(e).

4 If any of the above gcd conditions do not hold then the system is already broken.



A New Related Message Attack on RSA 189

nomials over finite-rings. To the best of our knowledge their use in cryptanalysis
is novel.

For a survey of the work on breaking RSA see [2]. An earlier version of this
paper appeared in PKC’05.

2 Main Result

2.1 Divided Differences

We borrow the concept of divided-differences from numerical analysis and adapt
it to handle formal polynomials over finite rings. This will allow us to extract the
message from a string of e cryptograms whose underlying messages are linearly
related. We specialize our definitions to the ring of integers modulo N, a product
of two primes (the “RSA ring”). All the congruences in this paper are taken
mudulo N.

Definition 1. Let h be a polynomial defined over the ring of integers modulo N ,
and let x0, x1, ...xn be distinct elements of the ring such that (x0−xi)−1 mod N
exist for i = 0, 1, ...n. The nth divided-difference of h relative to these elements
is defined as follows:

[xi] ≡ h(xi),
[x0, x1] ≡ [x0]−[x1]

x0−x1
,

[x0, x1, ....xn] ≡ [x0,x1,...xn−1]−[x1,x2,...xn]
x0−xn

.

Let x be an indeterminate variable, and for i = 0, 1, ...n, let xi ≡ x + bi

for some known constants bi (these are the general explicit linear relations that
we assume later). We can now view the above divided differences as univariate
polynomials in x defined over ZN .

The following lemma is true for the divided difference of any polynomial
mod N , but for our purposes it is enough to prove it for the RSA polynomial
xe mod N . Related results are stated in [8]. Before beginning the proof we

introduce some notation borrowed from [7]. Let πk(y) ≡
k∏

i=0

(y − xi). Then

taking the derivative of πk with respect to y we have for i ≤ k

π′
k(xi) ≡

∏
0≤j≤k

j �=i

(xi − xj)

By induction on k the following equality easily follows

[x0, ..., xk] ≡
k∑

i=0

h(xi)
π′

k(xi)
(1)

Let Ct(p) denote the tth coefficient of the polynomial p, starting from the
leading coefficients (the coefficients of the highest powers). We use Ct[x0, ..xk]
as a shorthand for Ct([x0, ..xk]).
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Lemma 1. Let [x0, ..., xn] be the nth divided difference relative to the RSA poly-
nomial h(x) ≡ xe mod N, and let x0, x1, ...xn be distinct elements of the ring
such that (x0−xi)−1 mod N exist for i = 0, 1, ...n. Then (i) for 0 ≤ n ≤ e, if(

e
e−n

)
�= 0 modN then deg[x0, ..., xn] = e− n. (ii) Ce−n[x0, x1, .., xn] ≡

(
e

e−n

)
(an important special case is C1[x0, x1, .., xe−1] ≡ e modN).

Comment: In practice the condition in claim (i) always holds, since e << N.

Proof. The claim is trivial for n = 0. For n ≥ 1 we prove the equivalent
proposition that Ct [x0, ..., xn] = 0 for t = e, e−1, ..., e−n+1 and Ce−n[x0, ..., xn]
is independent of the bi and is not congruent to 0. We use the notations 1/b
and b−1 interchangeably. We induct on n. When n = 1

[x0, x1] ≡
(x + b0)e − (x + b1)e

b0 − b1
≡

∑e
i=0

(
e
i

)
xi[be−i

0 − be−i
1 ]

b0 − b1

Note that by our assumption (b0 − b1)−1 modN exist. So Ce[x0, x1] ≡ 0
and Ce−1[x0, x1] ≡ e and indeed our claim is true for n = 1. For the inductive
hypothesis let n = k − 1 and assume that Ct [x0, ..., xk−1] ≡ 0 for t = e, e −
1, ..., e− (k−1)+1 and Ce−(k−1)[x0, ..., xk−1] is independent of the bi and is not
congruent to 0. We want to show that when n = k, Ct[x0, ..., xk] ≡ 0 for
t = e, e− 1, ..., e− k + 1 and Ce−k[x0, ..., xk] is independent of the bi and is not
congruent to 0.

The fact that Ct [x0, ..., xk] ≡ 0 for t = e, e−1, ..., e−k+1 follows immediately
from the inductive hypothesis and Definition 1. It takes a little more work to
show that Ce−k[x0, ..., xk] is independent of the bi.

Using (1):

[x0, x1, ..., xk] ≡
k∑

i=0

(x + bi)e

π′
k(xi)

≡
e∑

j=0

(
e

j

)
xj [

be−j
0

π′
k(x0)

+
be−j
1

π′
k(x1)

+ ... +
be−j
k

π′
k(xk)

]

We want to show that Ce−k[x0, x1, ..., xk] is independent of the bi.

Ce−k[x0, x1, .., xk] ≡
(

e

e− k

)
[

bk
0

π′
k(x0)

+
bk
1

π′
k(x1)

+ ... +
bk
k

π′
k(xk)

] (2)

So now it is sufficient to show that
n∑

i=0

(−1)i bn
i

(b0 − bi)...(bi−1 − bi)(bi − bi+1)...(bi − bn)
(3)

is independent of the bi.
We first multiply (3) by the necessary terms to get a common denominator.

We introduce some compact notation that will simplify the process. For a given
set of constants b0, b1, ...bk define

δ(h, i) ≡ (bh − bi)
δ(h, i, j) ≡ (bh − bi)(bh − bj)δ(i, j)

...
δ(i0, ..., ik) ≡ (bi0 − bi1)(bi0 − bi2) · · · (bi0 − bik

)δ(i1, ..., ik)
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Similarly we can also define δj ≡ δ(0, 1, ..., j, ..., k) where the bar denotes
that the index is missing (so if k = 4 then δ3 = δ(0, 1, 2, 4, )). Then (3) becomes:

bk
0δ0 − bk

1δ1 + · · ·+ (−1)kbk
kδk

δ(0, 1, ..., k)
(4)

We want to show that (4) is independent of the bi. In fact it equals 1. To
see this consider the Vandermonde matrix:

V ≡

⎡⎢⎢⎢⎣
1 b0 b2

0 · · · bk
0

1 b1 b2
1 · · · bk

1
...

...
...

. . .
...

1 bk b2
k · · · bk

k

⎤⎥⎥⎥⎦
The denominator in (4) is the well-known formula for det(V ). The numerator

is the determinant of V gotten by expanding along the last row. We conclude
from (2) that Ce−k[x0, x1, .., xk] ≡

(
e

e−k

)
, which is certainly independent of the

bi. This also implies that Ce−k[x0, x1, .., xk] is not congruent to 0 when k ≤ e.
By induction we are done.

2.2 Related-Messages Attack

Here we consider the general case where for i = 0, 1, ...e−1, xi ≡ aix+bi mod N .
N = pq is an RSA composite (p and q are large primes, with some additional
restrictions which are irrelevant in the current discussion), and the constants
ai, bi are known. Of course it is sufficient to consider just the case where
xi ≡ x + bi. We now show how to deterministically compute x in O(e) ZN -
operations after some pre-computation that depends only on the known con-
stants. If the constants bi hold for many unknown values of cryptograms xe

then the cost of pre-computations can be amortized and discarded. We show
that the cost of the additional computations that depend on the value of x is
O(e).

Specifically, π′
n(xk) is independent of y and of x, hence for all k these

coefficients can be computed in advance. In that case the cost of computing
[x0, x1, ...xe−1] ≡ ux + v ≡ w(x) is O(e).

For each particular value x we know how to compute the value w(x) without
knowing x using Lemma 1 and Formula (1). More explicitly, Let
ci ≡ (x + bi)e mod N, i = 0, 1, 2, ...e − 1, be the given cryptograms, whose

underlying messages are linearly related, and let π′
e−1(xk) ≡

e−1∏
i=0
i�=k

(bk − bi). We

use pk as a shorthand for π′
e−1(xk). Then

w(x) ≡
e−1∑
k=0

[xk]
π′

e−1(xk)
≡

e−1∑
k=0

ck

pk
.
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Note that the condition that the pairs (ai, bi), i = 0, 1, ...e− 1, are distinct
and ai �= 0, imply that we can replace them with equivalent relations where
ai = 1, and where for all i, j, bk − bi �= 0. Hence π′

e−1(xk)−1 exist and w(x) is
well defined.

From Lemma 1 (ii) we know that u = e. Note also that w(0) ≡ v ≡∑e−1
k=0 be

k · p−1
k mod N, and we can compute it in the pre-computation phase

(before intercepting the cryptograms). So we can find x ≡ (w(x)−v)e−1 mod N.
The following algorithm summarizes the above discussion:

Algorithm 1:

Given cryptograms ci ≡ (x + bi)e mod N, i = 0, 1, 2, ...e − 1, with known
constants bi, find x.

Method:

1. Pre computation:

For k = 0, ...e− 1, compute p−1
k ≡

e−1∏
i=0
i�=k

(bk − bi)−1;

v ≡
∑e−1

k=0 be
k · p−1

k mod N ;
2. Real-time computation: x ≡ e−1 · ((

∑e−1
k=0 ckp−1

k )− v)mod N.

The complexity of the pre-computation is O(e log2(e)) (see Appendix), and
the complexity of the real time computations is O(e).

3 Special Case

3.1 Finite Differences

We now consider the special case where the e cryptograms are of the form ci ≡
(ax + b · i)e mod N, i = 0, 1, ...e− 1, for any known constants a, b ∈ ZN , where
gcd(a, N) = gcd(b, N) = gcd(e!, N) = 1. The special linear relations among
these cryptograms allows us to deterministically compute x in overall O(e)
ZN -operations. As before x denotes an indeterminate variable.

Definition 2. For h a polynomial over any ring let Δ(0)(x) ≡ h(x), and let

Δ(i)(x) ≡ Δ(i−1)(x + 1)−Δ(i−1)(x), i = 1, 2, ...

It is easy to see that the degree of the polynomials resulting from this simpler
process keep decreasing as in the case of divided-differences. More precisely:

Lemma 2. In the special case where xi ≡ x + i, and gcd(n!, N) = 1,
[x0, x1, ....xn] ≡ Δ(n)(x)/n!
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A similar relation can be derived when xi ≡ ax + ib, for known constants
a, b. The next two lemmas are stated for general polynomials h(x), although
eventually we use them for h(x) ≡ xe mod N. Let m = deg(h), and 0 ≤ k ≤ m.
By induction on k:

Lemma 3. Δ(k)(x) ≡
∑k

i=0

(
k
i

)
· h(x + i) · (−1)k−i mod N.

For the algorithm we will need explicit formulas for the two leading terms
of Δ(k)(x). Let h(x) =

∑m
i=0 aix

i and let T
(k)
am,am−1(x) denote the two leading

terms of Δ(k)(x).

Lemma 4. T
(k)
am,am−1(x) ≡ (m−1)!

(m−k)!x
m−k−1(amm(x+k(m−k)/2)+am−1(m−k)).

Proof. We induct on k. The basis step is trivial. We verify one more step that
is needed later.

T (1)
am,am−1

(x) ≡ xm−2(amm(x +
m− 1

2
) + am−1(m− 1)) (5)

Δ(1)(x) ≡ h(x + 1) − h(x), whose two leading terms are indeed equal to
T

(1)
am,am−1(x) above. Now assume that the two leading terms of Δ(k−1)(x) are

T
(k−1)
am,am−1(x) ≡ αxm−k+1 + βxm−k, where α ≡ (m−1)!

(m−k)!amm, and

β ≡ (m−1)!
(m−k)! [ammk(m−k)/2+am−1(m−k)]. The proof can be completed by

showing that T
(1)
α,β(x) ≡ T

(k)
am,am−1(x). This can be done by computing the first

difference of T
(k−1)
am,am−1(x), substituting α for am and β for am−1 in equation

(5) to get the claim.

3.2 Related-Messages Attack with Lowered Complexity

Using the results of section 3.1 we consider the special case where xi ≡ x + i
(or likewise xi ≡ ax + bi, for known a, b) and use the simpler finite-differences
to yield overall complexity O(e).

In lemmas 3 and 4 let h(x) ≡ xe mod N, where e ≥ 3. Thus an ≡ 1, an−1 ≡ 0,

and T
(e−1)
1,0 ≡ e!(x + (e − 1)/2)(mod N). Lemmas 1 and 2 imply that after the

e− 1 finite difference we have a linear congruence ux + v ≡ w. Then lemma 4
gives us the values of u and v, and lemma 3 tells us how to compute w given
the e cryptograms.

Specifically u ≡ e!, v = e!(e − 1)/2 and w ≡
∑e−1

i=0

(
e−1

i

)
· ci · (−1)e−1+i

where ci ≡ (x + i)e (all the congruences are taken mod N). This equation is
solvable iff e!−1 mod N exists, which holds for practical (small) values of e. The
computation of w dominates, and takes O(e) operations in ZN (since

(
e−1

i

)
can be computed from

(
e−1
i−1

)
using one multiplication and one division).

If xi ≡ ax+ bi mod N, i = 0, 1, 2...e−1, for known a and b, with gcd(a, N) =
gcd(b, N) = 1, we can likewise compute x. Given cryptogram
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ci ≡ (ax+b·i )e mod N we can transform it into c′i ≡ ci ·b−e ≡ (z+i)e mod N,
where z ≡ xab−1 mod N. So

x ≡ a−1b(bee!)−1[
e−1∑
i=0

(
e− 1

i

)
· ci · (−1)e−1+i − e− 1

2
] mod N.

which is computable in O(e) ZN operations.

4 Conclusions

We have shown new attacks on RSA-encryption assuming known explicit linear
relations between the messages. Our attacks require more information (i.e.,
intercepting more cryptograms), but they run faster than previously published
attacks. When the public exponent is 32 bits long (as recommended in [4]) our
attacks run three orders of magnitudes faster than previous attacks.

This should be taken into consideration when designing very compact cryp-
tosystems (e.g., for RFID tags), although the default should be using some form
of protection like OAEP+ to destroy such known relations. Our attack tools
are borrowed from numerical analysis and adapted to handle formal polynomials
defined over finite rings.

Open problems: Can these or similar tools be used to attack other cases of
known relations, such as implicit linear relations or explicit non-linear relations?

A non-linear case. If ci = (aix+ bi)fi where fi is a known constant, then we can
find x in time O(ef), where f = lcm{fi}, by first converting ci = (aix + bi)fie

to c
′
i = c

f/fi

i = (aix + bi)fe, then solving for x using the previous method with
ef playing the role of e.
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Appendix: The Complexity of the Pre-processing

The following algorithm, due to Peter Montgomery, computes the pre-processing
phase of Algorithm 1 in O(e log2 e) time. We currently do not know of a better
algorithm for the general case.

For k = 0, ...e− 1, we need to compute pk = π′
k(y) ≡

e−1∏
i=0
i�=k

(bk − bi). We use

the observation stated before Formula (1). The algorithm proceeds as follows
(time complexity for each step is included in the brackets):

1. Expand the formal polynomial π(y) ≡
e−1∏
i=0

(y − xi) in indeterminate variable

y (O(e log2 e),as explained below).
2. Compute the formal derivative of π(y) (O(e)).
3. Simultaneously evaluate the value of the derivative in the given points bi, i =

0, 1, ...e− 1 (O(e log2 e), see [1] pp. 294, Corollary 2).

Expanding step (1) above:
Suppose we have a polynomial multiplication algorithm that works in time

O(n log n), where n is the degree of the polynomials. Multiply pairs (there are
n/2 many pairs). Then multiply the resulting n/4 pairs at cost O(2 log 2) each.
And so on. There are log e many levels. Let e = 2k. The total cost is
e
∑k

i=0 i = O(e log2 e).
Note that if the bi happen to be some powers of one primitive nth root of

unity, w ∈ ZN , then we can use DFT in O(n log n). However, for arbitrary b′is
chances to have this condition with n = O(e) are negligible.
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Abstract. We describe two widely used methods for the design and
analysis of approximation algorithms, the primal-dual schema and the
local ratio technique. We focus on the creation of both methods by revis-
iting two results by Bar-Yehuda and Even—the linear time primal-dual
approximation algorithm for set cover, and its local ratio interpretation.
We also follow the evolution of the two methods by discussing more
recent studies.

1 Introduction

We describe two approximation methods for solving combinatorial optimization
problems, the primal-dual schema and the local ratio technique. We specifically
focus on the contribution of two papers written by Reuven Bar-Yehuda and
Shimon Even in the early 1980’s. In their first paper [8] Bar-Yehuda and Even
presented a linear programming (LP) based approximation algorithm for the set
cover problem, and for its the well known special case, the vertex cover prob-
lem. The idea of using linear programming for approximating set cover was
not new—it was used before by Chvátal [17] and Hochbaum [24]. However, the
specific way in which linear programming was used was new. Bar-Yehuda and
Even’s algorithm [8] constructs simultaneously a primal integral solution and a
dual feasible solution without solving either the primal or dual programs. Their
algorithm was the first to operate in this way, which later became known as the
primal-dual schema. The local ratio technique was first used about a couple of
years later in a second paper by Bar-Yahuda and Even [9] that deals with the
set cover problem. In this paper they presented a local ratio analysis of the algo-
rithm from [8]. They also developed a (2− log log n

2 log n )-approximation algorithm for
the vertex cover problem, which is partially based on the local-ratio technique.
Over the years the two methods have become immensely popular. Numerous
algorithms which use either the primal-dual schema or the local ratio technique
were published. Almost two decades later, Bar-Yehuda and Rawitz [13] proved
that the two methods are actually equivalent.
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Before going any further, we present some basic concepts relating to combi-
natorial optimization and approximation algorithms. An optimization problem
is a problem consisting of a set of possible instances. Each possible instance has
a set of candidate solutions, called feasible solutions, each of which is associated
with a weight. In a minimization (resp., maximization) problem our goal is to
find a feasible solution of minimum (resp., maximum) weight. Such a solution
is called an optimal solution. The weight of an optimal solution is call the opti-
mum. For example, in the vertex cover problem, an instance consists of a simple
graph G = (V, E), and a weight function w on the vertices. A solution is a set of
vertices, and a feasible solution is a subset U ⊆ V such that each edge in E has
at least one end-point in U . Such a feasible solution is called a vertex cover. The
weight of a vertex cover U is the total weight of the vertices in U . In the vertex
cover problem our goal is to obtain a minimum weight vertex cover. The special
case in which w(u) = 1 for every u ∈ V is referred to as the unweighted vertex
cover problem. In this problem, our goal is to find a vertex cover of minimum
cardinality.

Since the vertex cover problem and many other optimization problems are
NP-hard, we are forced to compromise. Instead of seeking algorithms that com-
pute optimal solutions in polynomial time, we are willing to settle for efficient
algorithm that compute near optimal solutions, or approximate solutions. A solu-
tion whose weight is within a factor of r of the optimum is called r-approximate.
An r-approximation algorithm is an algorithm that computes r-approximate so-
lutions.

For example, consider Algorithm UnweightedVC which is a 2-
approximation algorithm for unweighted vertex cover due to Gavril (see [20]).

Algorithm 1 - UnweightedVC(G): a 2-approximation algorithm for vertex
cover
1: U ← ∅
2: while there exists an uncovered edge do
3: Let (u, v) be an uncovered edge
4: U ← U ∪ {u, v}
5: end while
6: Return U

Clearly, this algorithm runs in linear time. Also, U is a vertex cover because
this is the termination condition of the algorithm. However, how close is the
size of the solution U to the size of an optimal vertex cover? We show that the
size of U is quite close to the optimum by proving that it is not more than
twice the optimum. Denote by M the set of edges that are considered in Line 3.
Clearly, M is a maximal matching. Since there are no two edges in M that share
a common vertex, any vertex cover must be at least as large as M . Hence, if U∗

is an optimal vertex cover, then |U | = 2|M | ≤ 2|U∗|.
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Consider the analysis of Algorithm UnweightedVC. It is based on the fol-
lowing simple idea. First, we find a lower bound on the optimum value and then
we show that the size of the solution computed by the algorithm is bounded by
r times the lower bound, where r is the approximation ratio of the algorithm.
The bound in our case is the size of M . This theme is widely used in the field of
approximation algorithms, especially in approximation algorithm that are based
on linear programming—many combinatorial optimization problems can be ex-
pressed as linear integer programs, and the value of an optimal solution to their
LP-relaxation provides the desired bound.

As we shall see in the sequel, algorithms that fall within the scope of either
the primal-dual schema or the local ratio technique use a variation on the lower
bound idea (or, upper bound, in the maximization case). Let W denote the
weight of the solution computed by the algorithm. Instead of finding directly
some lower bound B on the optimum such that W ≤ r · B, we break down
the weight of the solution into a sum of partial weights W = W1 + . . . + Wk.
Then, for each such partial weight Wi we find a “partial” lower bound Bi such
that Wi ≤ r · Bi. Our solution is r-approximate since the sum of the partial
lower bounds is not greater than the optimum. In both methods the breakdown
of W is determined by the manner in which the solution is constructed by the
algorithm. In fact, the algorithm constructs the solution in such a manner as to
ensure that such a breakdown exists. The breakdown is done in steps, where in
the ith step, the algorithm determines the ith partial weight, and the ith lower
bound Bi. In the primal-dual schema the partial weight and bound are induced
by an increase of the dual solution, while in the local ratio technique they are
determined by the construction of a weight function.

The remainder of this essay is organized as follows. In Section 2 we present
several basic results in the area of linear programming, and formally define the
problems that we consider in this essay. Bar-Yehuda and Even’s [8] primal-dual
approximation algorithm for set cover is presented, in hitting set terms, in Sec-
tion 3. Afterwards, we give a general description of the schema, and demonstrate
it on an extension of the hitting set problem called generalized hitting set. The
local ratio version of the approximation algorithm for set cover [9] is given in
Section 4. This section also contains a general description of the local ratio
technique, and a local ratio algorithm for generalized hitting set. Finally, in Sec-
tion 5 we survey results that were obtained in both methods during the last two
decades, and discuss the connection between the two methods.

2 Preliminaries

2.1 Linear Programming

In this section we state several basic facts from the theory of linear programming.
Note that the section is written in terms of minimization problems. (Similar
arguments can be made in the maximization case.) For more details about linear
programming the reader is referred to, e.g., [28, 29, 31].
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Consider the following linear integer program:

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi ∀i ∈ {1, . . . , m}

xj ∈ N ∀j ∈ {1, . . . , n}

(IP)

The LP-relaxation of IP is obtained by removing the integrality constraints:

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi ∀i ∈ {1, . . . , m}

xj ≥ 0 ∀j ∈ {1, . . . , n}

(P)

Let opt(IP) and opt(P) denote the optimum of IP and P, respectively.
Notice that any feasible solution of IP is also feasible with respect to P. Hence,

Observation 1 opt(P) ≤ opt(IP).

We refer to P as the primal linear program. The following linear program is
the dual of P:

max
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≤ cj ∀j ∈ {1, . . . , n}

yi ≥ 0 ∀i ∈ {1, . . . , m}

(D)

A solution of P is called a primal solution, and a solution of D is called a
dual solution. A solution of IP is referred to as an integral primal solution.

The connection between the primal and dual optima is given by the following
two theorems (the second is given without proof):

Theorem 2 (Weak Duality). Let x and y be a pair of primal and dual solu-
tions. Then, bT y ≤ cT x.

Proof.

n∑
j=1

cjxj ≥
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑
i=1

⎛⎝ n∑
j=1

aijxj

⎞⎠ yi ≥
m∑

i=1

biyi (1)

where the first inequality follows from a summation of the dual constraints, and
the second follows from a summation of the primal constraints. ��
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Theorem 3 (Strong Duality). Let x∗ and y∗ be a pair of optimal primal and
dual solutions. Then, bT y∗ = cT x∗.

It follows that

Observation 4 Let x be an integral primal solution, and let y be a dual solution.
Then, bT y ≤ opt(D) = opt(P) ≤ opt(IP) ≤ cT x.

The Strong Duality Theorem provides us with a way to characterize a primal-
dual pair of optimal solutions.

Theorem 5 (Complementary Slackness Conditions). Let x and y be a
pair of primal and dual solutions. Then, x and y are optimal if and only if the
following conditions, called the complementary slackness conditions, are satis-
fied:

Primal conditions: ∀j, xj > 0⇒
m∑

i=1

aijyi = cj

Dual conditions: ∀i, yi > 0 ⇒
n∑

j=1

aijxj = bi

Proof. First, assume x and y are optimal. By the Strong Duality Theorem it
follows that cT x = bT y. Therefore, the inequalities in Equation (1) become
equalities:

n∑
j=1

cjxj =
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑
i=1

⎛⎝ n∑
j=1

aijxj

⎞⎠ yi =
m∑

i=1

biyi (2)

The primal complementary slackness conditions are implied by the first equality,
and the dual conditions are implied by the third equality.

For the other direction assume that the complementary slackness conditions
are satisfied. In this case Equality (2) is satisfied as well, and therefore cT x = bT y.
x and y are optimal by the Weak Duality Theorem. ��

2.2 The Problems

Recall that, in the vertex cover problem, an instance consists of a simple graph
G = (V, E), and a weight function w on the vertices, and our goal is to obtain a
minimum weight vertex cover. Hence, the vertex cover problem can be formulated
by the following linear integer program:

min
∑
u∈V

w(u)xu

s.t. xu + xv ≥ 1 ∀(u, v) ∈ E
xu ∈ {0, 1} ∀u ∈ V

(VC)

where xu = 1 if and only if u is in the vertex cover. The LP-relaxation of VC
is obtained by replacing the integrality constraints by: xu ≥ 0 for every u ∈ V .
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(Notice that the possible inequalities of the form xu ≤ 1 are redundant.) We
denote the LP relaxation of VC by VC-P. (Henceforth, a -P suffix denotes the
LP-relaxation of a linear integer program, while a -D suffix denotes the dual of
the LP-relaxation.)

The hitting set problem is defined as follows. The input consists of a collection
of subsets S = {S1, . . . , Sm} of the ground set U of size n. Each element u ∈ U
is associated with a positive weight w(u). A set H is said to hit a subset S if
H ∩ S �= ∅. A hitting set is a set H ⊆ U that hits every subset S ∈ S. In the
hitting set problem our goal is find a hitting set of minimum total weight. Given
a hitting set instance, we denote by S(u) the collection of sets that contain u,
i.e., S(u) � {S : u ∈ S}. We define smax � maxS∈S |S|. Note that the vertex
cover problem is a special case of hitting set in which all sets are of size two, and
hence smax = 2 in this special case. We also note that some of the results in this
survey were originally written in terms of the set cover problem. In the set cover
problem we are given a collection of sets S of the ground set U , and a weight
function on the subsets. The objective is to find a minimum weight collection of
sets that covers all elements, or a minimum weight set cover. It is easy to see
that set cover and hitting set are equivalent problems in the sense that each is
obtained from the other by switching the roles of sets and elements.

The hitting set problem can be formulated by the following linear integer
program:

min
∑
u∈U

w(u)xu

s.t.
∑
u∈S

xu ≥ 1 ∀S ∈ S

xu ∈ {0, 1} ∀u ∈ U

(HS)

where xu = 1 if and only if u is in the hitting set. The LP-relaxation of HS is
obtained by replacing the integrality constraints by: xu ≥ 0 for every u ∈ U . We
denote that LP relaxation by HS-P. The dual of HS-P is:

max
∑
S∈S

yS

s.t.
∑

S∈S(u)

yS ≤ w(u) ∀u ∈ U

yS ≥ 0 ∀S ∈ S

(HS-D)

In the generalized hitting set problem we are also given of a collection of
subsets S of the ground set U , and our goal is to hit the sets in S by using
elements from U . However, in this case, we are allowed not to hit a set S,
provided that we pay a tax w(S). Hence, the weight function w is define on
both the elements and the subsets. Formally, the input is a collection of sets
S = {S1, . . . , Sm} of the ground set U = {1, . . . , n}, and a weight function on
the elements and subsets, and our goal is to find a minimum-weight set H ⊆ U ,
where the weight of H is the weight of the elements in H and the weight of the
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sets that are not hit by H . The hitting set problem is the special case where the
tax w(S) is infinite for every set S ∈ S.

In order to formulate generalized hitting set using a linear program it would
be convenient to slightly change the problem definition. Instead of simply search-
ing for a set of elements H , we shall search for a set of elements H and a sub-
collection of sets T such that for every set S either S is hit by H , or it is contained
in T , i.e., we seek a pair (H, T ) where H ⊆ U , T ⊆ S, and for all S ∈ S, either
H ∩ S �= ∅ or S ∈ T . This means that we allow a set S to be both hit by H and
contained in T . Clearly, for a given generalized hitting set instance, the optima
of both problems are the same. Moreover, any solution for the second definition
can be easily turned into a solution for the first. Hence, the generalized hitting
set problem can be formalized as follows:

min
∑
u∈U

w(u)xu +
∑
S∈S

w(S)xS

s.t.
∑
u∈S

xu + xS ≥ 1 ∀S ∈ S

xu ∈ {0, 1} ∀u ∈ U
xS ∈ {0, 1} ∀S ∈ S

(GHS)

where xu = 1 if and only if the element u is contained in H , and xS = 1 if and
only if the subset S is contained in T . As usual, the LP-relaxation is obtained
by replacing the integrality constraints by: xu ≥ 0 for every u ∈ U and xS ≥ 0
for every S ∈ S. We denote that LP relaxation by GHS-P. The dual is:

max
∑
S∈S

yS

s.t.
∑

S∈S(u)

yS ≤ w(u) ∀u ∈ U

yS ≤ w(S) ∀S ∈ S
yS ≥ 0 ∀S ∈ S

(GHS-D)

Notice that a generalized hitting set instance can be viewed as a hitting
set instance in which each set S contains a unique element uS whose weight
is w(uS) � w(S). This way, we can pay w(S) for the element uS instead of
paying the tax w(S) for not hitting S. In the sequel we present several smax-
approximation algorithms for hitting set. It follows that these algorithm can
be used to obtain (smax + 1)-approximate solutions for generalized hitting set.
However, we also show how to obtain smax-approximate solutions for generalized
hitting set.

An important notion in the design of approximation algorithms using primal-
dual or local ratio is the notion of minimal solutions. A feasible solution is said
to be minimal with respect to set inclusion (or minimal for short) if all its
proper subsets are not feasible. Minimal solutions arise naturally in the context
of covering problems, which are the problems for which feasible solutions have
the property of being monotone inclusion-wise, that is, the property that adding
items to a feasible solution cannot render it infeasible. For example, adding an
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element to a hitting set yields a hitting set, so hitting set is a covering problem.
In contrast, adding an edge to a spanning tree does not yield a tree, so minimum
spanning tree is not a covering problem. However, if instead of focusing only on
trees, we consider all sets of edges that intersect all non trivial cuts in the given
graph the problem becomes a covering problem.

It is easy to see that generalized hitting set (under the second definition) is
a covering problem. The following observation formalizes the fact that it makes
no sense to add a set S to T if H ∩ S �= ∅.

Observation 6 Let (H, T ) be a minimal solution, and let x be the inci-
dence vector of (H, T ). Then, (i) xS = 1 if and only if

∑
u∈S xu = 0, and

(ii)
∑

u∈S xu + xS ≤ smax.

We note that the use of minimality in the context of the generalized hitting
set problem is somewhat artificial. However, it will assist us in demonstrating
the use of minimality in the design of primal-dual and local ratio approximation
algorithms for covering problems.

3 The Primal-Dual Schema

In this section we present the primal-dual smax-approximation algorithm for
hitting set from [8]. Afterwards we give a general description of the primal-dual
schema, and demonstrate it on the generalized hitting set problem.

An r-approximation algorithm for a minimization problem that is based on a
primal-dual analysis produces an integral primal solution x and a dual solution
y such that the weight of the primal solution is not more than r times the value
of dual solution. Namely, it produces an integral primal solution x and a dual
solution y such that

cT x ≤ r · bT y (3)

The integral primal solution x is r-approximate due to Observation 4.
There are several ways to find such a pair of primal and dual solutions. The

first one to do so was Chvátal [17], who proved that the greedy algorithm for
hitting set computes Hm-approximate solutions, where Hm is the mth harmonic
number. (Recall that, in hitting set terms, m is the number of sets.) In his
analysis he obtained an infeasible dual solution whose value as not less than
the weight of the integral primal solution that was computed by the algorithm.
Then, he showed that if the dual solution is divided by Hm it becomes feasible.
This method was later called dual fitting, and the feasible solution was referred
to as shrunk dual. (See [32, 26] for more details.)

Hochbaum [24] presented several smax-approximation algorithms for hit-
ting set that require the solution of a linear program. The first algorithm
is as follows: (i) compute an optimal solution y∗ of HS-D, and (ii) return
HD = {u :

∑
S∈S(u) y∗

S = w(u)}. We show that HD is a hitting set. Assume by
contraposition that HD is not a hitting set. Then, there exists a set S such that
S ∩HD = ∅. Let ε = minu∈S{w(u)−

∑
S∈S(u) y∗

S}. Clearly, ε > 0. Furthermore,
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if we raise y∗
S by ε it remains feasible in contradiction to the optimality y∗. Next,

we show that HD is smax-approximate. Let xD be the incidence vector of HD.
Then,

w(HD) =
∑
u∈U

w(u)xu

=
∑
u∈U

xu

∑
S∈S(u)

y∗
S

=
∑
S∈S

y∗
S

∑
u∈S

xu

≤ smax

∑
S∈S

y∗
S

≤ smax · opt

and we are done.
An smax-approximate hitting set can also be found by solving the primal

linear program HS-P. Consider the following algorithm: (i) compute an optimal
solution x∗ of HS-P, and (ii) return HP = {u : x∗

u > 0}. HP must be a hitting
set, since otherwise, x∗ is not feasible. Moreover, by the complementary slack-
ness conditions HP ⊆ HD (where HD is defined as above). Hence, HP is smax-
approximate as well. Note that it is even enough to consider only elements whose
primal variable is at least 1/smax. That is, the set H ′

P = {u : x∗
u ≥ 1/smax} is

also an smax-approximate solution. H ′
P is feasible since there exists u ∈ S such

that x∗
u ≥ 1/smax for every subset S ∈ S, and H ′

P is smax-approximate since
H ′

P ⊆ HP .
Following the work of Hochbaum [24], Bar-Yehuda and Even [8] presented

another smax-approximation algorithm for hitting set that uses primal-dual ar-
guments. As opposed to Hochbaum’s algorithm, this algorithm is not based on
finding an optimal dual (or primal) solution, and therefore it is more efficient.
The key observation that was made by Bar-Yehuda and Even [8] is that the dual
solution, y∗, used in Hochbaum’s analysis does not have to be optimal. A dual
solution y is called maximal if an increase in yi makes y infeasible, for any i.
Clearly, an optimal dual solution is also maximal. It is not hard to verify that
H ′

D = {u :
∑

S∈S(u) yS = w(u)} is a hitting set for any maximal (and not nec-
essarily optimal) dual solution y. Hence, Hochbaum’s analysis stays intact when
a maximal dual solution is used (and HD is replaced by H ′

D). The improved
running time is due to the fact that a simple greedy algorithm can compute
a maximal dual solution in linear time. Algorithm PD-HS is the algorithm
from [8] given in terms of hitting set.

It is not hard to verify that the running time of Algorithm PD-HS is
O(

∑
S∈S |S|), which means that it runs in linear time. Observe that, in every

iteration, yS is raised as much as possible while maintaining feasibility, hence
y is a maximal dual solution. Hence, the set of elements whose corresponding
dual constraint is tight (i.e., H ′

D) constitute an smax-approximate hitting set.
Algorithm PD-HS does not return the set of elements whose corresponding
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Algorithm 2 - PD-HS(U,S, w): a primal-dual smax-approximation algorithm
for hitting set
1: H ← ∅
2: y ← 0
3: while S �= ∅ do
4: Let S ∈ S
5: v ← argminu∈S

{
w(u) −

∑
S′∈S(u) yS′

}
6: yS ← w(v) −

∑
S′∈S(v) yS′

7: H ← H ∪ {v}
8: S ← S \ S(v)
9: end while

10: Return H

dual constraint is tight. However, an element v may be added to H only if its
corresponding dual constraint is tight (i.e., H ⊆ H ′

D). Moreover, every subset
S contains at least one such element. Hence, H is feasible and therefore also
smax-approximate.

It is important to notice that since the choice of v (in Line 6) is made accord-
ing to the tightness of the dual constraints, and not according to the values of the
dual variables, it is enough to compute, in every iteration, the tightness of the
dual constraints, instead of maintaining the dual solution y. The actual values
of the dual variables are needed only for purposes of analysis. Hence, Lines 5–6
of Algorithm PD-HS can be replaced with the following two lines:

5: v ← argminu∈S {w(u)}
6: For every u ∈ S do: w(u)← w(u) − w(v)

In fact, the original algorithm was presented in this way in [8].
Algorithm PD-HS computes an integral primal solution x, the incidence

vector of H , and a dual solution y such that the weight of x is bounded by
smax times the value of y. This seems like a neat trick, but can we use this
idea in order to approximate other problems? We shall see that the connection
between x and y is somewhat more complicated than what is implied by the
analysis of Algorithm PD-HS. Clearly, Algorithm PD-HS picks only elements
whose corresponding dual constraint is tight. Hence, if xu = 1 (i.e., u ∈ H)
then

∑
S∈S(u) yS = w(u). Now, consider a set S ∈ S, and the corresponding

constraint
∑

u∈S xu ≥ 1. Clearly,
∑

u∈S xu ≤ smax for any S such that yS > 0
(or, for any other S). Putting it all together we get that x and y satisfy the
following conditions:

∀u ∈ U, xu > 0⇒
∑

S∈S(u)

yS = w(u)

∀S ∈ S, yS > 0⇒ 1 ≤
∑
u∈S

xu ≤ smax

The first set of conditions are exactly the primal complementary slackness con-
ditions, while the second is a relaxation of the dual conditions. Moreover, the
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relaxation factor is exactly the approximation ratio of Algorithm PD-HS. As
we shall see this idea is not limited to the hitting set problem.

Let x be an integral primal solution, and let y be a dual solution. Also, assume
that x and y satisfy the following relaxed complementary slackness conditions:

Primal conditions: ∀j, xj > 0⇒
m∑

i=1

aijyi = cj

Relaxed dual conditions: ∀i, yi > 0 ⇒ bi ≤
n∑

j=1

aijxj ≤ r · bi

Then,

n∑
j=1

cjxj =
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑
i=1

⎛⎝ n∑
j=1

aijxj

⎞⎠ yi ≤ r ·
m∑

i=1

biyi

which means that x is r-approximate. Hence, we have found a way to compute
a pair of integral primal and dual solutions that satisfy Inequality (3).

Indeed, a typical primal-dual algorithm computes a primal-dual pair (x, y)
that satisfies the relaxed complementary slackness conditions. Moreover, a
primal-dual algorithm usually constructs the primal-dual pair in such a way
that the relaxed complementary slackness conditions are satisfied throughout
its execution. It starts with an infeasible primal solution and a feasible dual
solution (usually, x = 0 and y = 0). It iteratively raises the dual solution, and
improves the feasibility of the primal solution while maintaining the following
two invariants: (i) a primal variable is increased only if its corresponding primal
condition is satisfied, and (ii) a dual variable is increased only if its corresponding
relaxed dual condition is satisfied. (We note that many primal-dual algorithms
change several dual variables in each iteration. However, it can be shown that it
is enough to raise only a single dual variable in each iteration [15, 13].) Hence, an
iteration of a primal-dual r-approximation algorithm (for a covering problem)
can be informally described as follows:

1. Find a primal constraint, αx ≥ β, such that αx ≤ r · β for every feasible
solution x.

2. Raise the dual variable that corresponds to the above primal constraint until
some dual constraint becomes tight.

3. Add an element whose corresponding dual constraint is tight to the primal
solution.

Steps (1) and (2) ensure that the relaxed dual conditions are satisfied, while
Step (3) ensures that the primal conditions are satisfied. The reader is referred
to [15, 13] for a formal description.

In many primal-dual algorithms the Step (1) is slightly modified. Instead of
finding a primal constraint for which αx ≤ r ·β for every feasible solution x, it is
enough to find a primal constraint αx ≥ β, for which αx ≤ r ·β for every minimal
solution x (or, sometimes, for every feasible solution x that satisfies some other
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property P). Such a constraint is called r-effective (or r-effective with respect to
P). In this case, the algorithm must compute a minimal solution x (or a solution
x that satisfies P), since otherwise the dual solution y do not satisfy the relaxed
dual complementary slackness conditions at termination. Primal-dual algorithms
that compute minimal solutions usually use a primal pruning procedure that is
sometimes referred to as reverse deletion. Algorithms that use a property P other
than minimality use some sort of solution correction procedure that depend on
P . (See [15, 13] for more details.)

We demonstrate the above ideas on the generalized hitting set problem. Al-
gorithm PD-GHS is an smax-approximation algorithm for generalized hitting
set that was presented by Bar-Yehuda and Rawitz [13].

Algorithm 3 - PD-GHS(U,S, w): a primal-dual smax-approximation algorithm
for generalized hitting set
1: H ← ∅, T ← ∅
2: y ← 0
3: for all S ∈ S do
4: Raise yS until some dual constraint becomes tight
5: if there exists an element u ∈ S whose dual constraint became tight then
6: H ← H ∪ {u}
7: else
8: T ← T ∪ {S}
9: end if

10: end for
11: T ← T \

⋃
u∈H S(u).

12: Return (H,T )

We show that Algorithm PD-GHS computes a pair of minimal primal so-
lution and dual solution that satisfies the relaxed complementary slackness con-
ditions. First, (H, T ) is minimal due to Line 11. Also, the primal conditions are
satisfied by the construction of the primal solution. Now, consider a set S ∈ S
and its corresponding primal constraint:

∑
u∈S xu + xS ≥ 1. According to Ob-

servation 6 we know that
∑

u∈S xu + xS ≤ smax for every minimal solution x.
Hence, any minimal solution satisfies the relaxed dual slackness condition corre-
sponding to S. It follows that Algorithm PD-GHS computes smax-approximate
solutions.

We note that in some cases proving that the relaxed dual slackness condi-
tions are satisfied for some r may be a difficult task, e.g., the 2-approximation
algorithms for the feedback vertex set problem [16]).

We also remark that most primal-dual algorithms in the literature are based
on a predetermined LP formulation, and therefore several dual variable are
changed in each iteration of the algorithm. Hence, most primal-dual algorithms
do not refer explicitly to the relaxed complementary slackness conditions. As
mentioned above, such algorithms can be altered such that only a single dual
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variable is changed in each iteration (see [15, 13]). After doing so these analyses
can be easily explained using the relaxed conditions. It is important to note that
the combinatorial properties of the problem that were used in the analysis are
usually presented in a much clearer fashion when the analysis change only a
single dual variable in each iteration and is based on the relaxed complementary
slackness conditions. Hence, such analyses tend to be simpler and more elegant.

4 Local Ratio

We re-consider Gavril’s 2-approximation algorithm for unweighted vertex cover
(Algorithm UnweightedVC). In each iteration the algorithm picks two vertices
u and v that cover the uncovered edge (u, v). Since this edge must be covered,
any vertex cover must contain at least one of the vertices. Hence, if we take both
u and v we decrease the optimum by at least one, while adding not more than
two vertices to the solution. Notice that this argument is local in the sense that
it refers separately to any edge in M . (Recall that M is the maximal matching
constructed by the algorithm.) This simple idea is at the heart of the local ratio
technique.

We show how to extend this algorithm to an smax-approximation algorithm
for the weighted hitting set problem. Imagine that we have to actually purchase
the elements we select as our solution. Rather than somehow deciding on which
elements to buy and then paying for them, we adopt the following strategy. We
repeatedly select an element and pay for it. However, the amount we pay need
not cover its entire cost; we may return to the same vertex later and pay some
more. In order to keep track of the payments, whenever we pay ε for a vertex,
we lower its marked price by ε. When the marked price of an element drops
to zero, we are free to take it, as it has been fully paid for. The heart of the
matter is the rule by which we select the element and decide on the amount to
pay for it. Actually, we select up to smax elements each time and pay ε for each,
in the following manner. We select any subset S whose elements have non-zero
weight, and pay ε = minu∈S w(u) for every element in S. As a result, the weight
of at least one of the elements drops to zero. After O(n) rounds, prices drop
sufficiently so that every set contains an element of zero weight. Hence, the set
of all zero-weight elements is a hitting set.

We formalize the above discussion by Algorithm LR-HS which is a lin-
ear time smax-approximation algorithm that was presented by Bar-Yehuda and
Even [9]. (The original algorithm was presented in set cover terms.) We say that
a set is positive if all its elements have strictly positive weights. Notice that on
instances of unweighted vertex cover it is identical to Gavril’s 2-approximation
algorithm.

To formally analyze the algorithm consider the ith iteration. Let Si be the
set that was selected in this iteration, and let εi be the weight of the minimum
weight element in Si. Since every hitting set must contain at least one element
in Si, decreasing the weight of the elements in Si by εi lowers the weight of
every hitting set by at least εi. Hence, the optimum must also decrease by at



A Tale of Two Methods 209

Algorithm 4 - LR-HS(U,S, w): a local ratio smax-approximation algorithm for
hitting set
1: while there exists a positive set S do
2: ε ← minu∈S {w(u)}
3: For every u ∈ S do: w(u) ← w(u) − ε
4: end while
5: Return the set H = {u : w(u) = 0}

least εi. Thus, in the ith round we pay smax · εi and lower the optimum by at
least εi. Since H is a zero weight hitting set (with respect to the final weights),
the optimum has decreased to zero. Hence, opt ≥

∑
i εi. One the other hand,

since our payments fully cover H , its weight is bounded by
∑

i smax · εi. H is
smax-approximate, because w(H) ≤

∑
i smax · εi ≤ smax · opt.

It is interesting to note that the proof that the solution found is smax-
approximate does not depend on the actual value of ε in any given iteration.
In fact, any value between 0 and minu∈S {w(u)} would yield the same result
(by the same arguments). We chose minu∈S {w(u)} for the sake of efficiency.
This choice ensures that the number of elements with positive weight strictly
decreases with each iteration.

In Algorithm LR-HS we have paid smax · ε for lowering opt by at least ε in
each round. Other local ratio algorithms can be explained similarly—one pays in
each round at most r ·ε, for some r, while lowering opt by at least ε. If the same
r is used in all rounds, the solution computed by the algorithm is r-approximate.
This idea works well for several problems. However, it is not hard to see that this
idea works mainly because we make a down payment on several elements, and we
are able to argue that opt must drop by a proportional amount because every
solution must contain one of these elements. This localization of the payments
is at the root of the simplicity and elegance of the analysis, but it is also the
source of its weakness: how can we design algorithms for problems in which
no single element (or set of elements) is necessarily involved in every optimal
solution? For example, consider the feedback vertex set problem, in which we are
given a graph and a weight function on the vertices, and our goal is to remove
a minimum weight set of vertices such that the remaining graph contains no
cycles. Clearly, it is not always possible to find a constant number of vertices
such that at least one of them is part of every optimal solution!

It helps to view the payments made by the algorithm as the subtraction of a
new weight function w1 from the current weight function w. For example, exam-
ine an iteration of Algorithm LR-HS. The action taken in Line 3 is equivalent
to defining a new weight function:

w1(u) =

{
ε u ∈ S,

0 u �∈ S,

and subtracting it from w. The analysis above implies that:

Observation 7 Every hitting set is smax-approximate with respect to w1.
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Hence, any smax-approximate hitting set H with respect to w − w1 is also
smax-approximate with respect to w1. By the following theorem H is also smax-
approximate with respect to w.

Theorem 8 (Local Ratio Theorem [9, 6]). Let (F , w) be a minimization
problem, where F is a set of constraints on x ∈ R

n, and w ∈ R
n is a weight

function. Also, let w1 and w2 be weight functions such that w = w1 + w2. Then,
if x is r-approximate with respect to (F , w1) and with respect to (F , w2), then x
is r-approximate with respect to (F , w).

Proof. Let x∗, x∗
1, x

∗
2 be optimal solutions with respect to (F , w), (F , w1), and

(F , w2), respectively. Then, wx = w1x + w2x ≤ r ·w1x
∗
1 + r ·w2x

∗
2 ≤ r · (w1x

∗ +
w2x

∗) = r · wx∗. ��

Note that F can include arbitrary feasibility constraints and not just linear
constraints. Nevertheless, all successful applications of the local ratio technique
to date involve problems in which the constraints are linear.

This idea of weight decomposition leads us to the to Algorithm Recursive-
LR-HS which is a recursive version of Algorithm LR-HS.

Algorithm 5 - Recursive-LR-HS(U,S, w): a local ratio smax-approximation
algorithm for hitting set
1: if S = ∅ then
2: Return ∅
3: end if
4: Let S ∈ S
5: v ← argminu∈S {w(u)}
6: ε ← w(v)

7: Define w1(u) =

{
ε u ∈ S,

0 u �∈ S,

8: H ← {v} ∪ Recursive-LR-HS(U \ {v} ,S \ S(v), w − w1)
9: Return H

We first note that this algorithm is slightly different from Algorithm LR-
HS, since not all the vertices that have zero weight at the recursive base are
necessarily taken into the solution. (A similar pruning procedure can be added
to Algorithm LR-HS as well.)

Since Algorithm Recursive-LR-HS is recursive, it is natural to use in-
duction in its analysis. First, it is not hard to show that the solution re-
turned is a hitting set by induction on the number of recursive calls. (Note
that this number is bounded by the number of elements.) We prove that the
solution is smax-approximate by induction. In the base case, ∅ is an optimal
solution. For the inductive step, let H be the solution returned, and denote
w2 = w − w1. By the induction hypothesis H \ {v} is smax-approximate with
respect to (U \ {v} ,S \ S(v), w2). Since w2(v) = 0, the optima of (S, U, w2)



A Tale of Two Methods 211

and of (U \ {v} ,S \ S(v), w2) are the same. Hence, H is smax-approximate with
respect to (S, U, w2). Due to Observation 7 any hitting set with respect to the
instance (S, U) is smax-approximate with respect to w1, therefore H is smax-
approximate with respect to (S, U, w1). Finally, H is smax-approximate with
respect to (S, U, w) as well due to the Local Ratio Theorem.

Observation 7 states that the weight function w1 is well behaved. That is,
from its view point all hitting sets weigh roughly the same (up to a multiplitive
factor of smax). We formalize the notion of well behaves weight functions.

Definition 9 A weight function w is said to be r-effective with respect to prop-
erty P if there exists a number b such that b ≤ wx ≤ r ·b for all feasible solutions
x that satisfy P.

In Algorithm Recursive-LR-HS the property P uses is simply feasibility.
However, in many local ratio algorithms the property P is minimality, and in
this case w is simply called r-effective. When P is satisfies by every solutions w
is sometimes called fully r-effective.

It turns out that in many cases it is convenient to use algorithms that are
based on weight decomposition. This is especially true when the local ratio ad-
vancement step includes more than a constant number of elements, or when w1

is well behaved for solutions that satisfy a certain property (usually, minimal
solutions) and not for every solution.

A typical local-ratio r-approximation algorithm for a covering problem is
recursive, and works as follows. Given a problem instance with a weight function
w, we find a non-negative weight function w1 ≤ w such that (i) every minimal
solution is r-approximate with respect to w1, and (ii) there exists some index j
for which w(j) = w1(j). We subtract w1 from w, and remove some zero weight
element from the problem instance. Then, we recursively solve the new problem
instance. If the solution returned is infeasible the above mentioned element is
added to it. This way we make sure that the solution is minimal with respect to
the current instance. Since the solution for the current instance is r-approximate
with respect to both w1 and w − w1, it is also r-approximate with respect to w
by the Local-Ratio Theorem. The base of the recursion occurs when the problem
instance has degenerated into an empty instance.

We demonstrate these ideas by presenting an smax-approximation algorithm
for the generalized hitting set problem. The algorithm is taken from [11] and is
called Algorithm LR-GHS. For purposes of conciseness we represent each set
S by an element uS that is contained in S and whose weight is w(uS) � w(S).
Recall that, this way, we can pay w(S) for the element uS instead of paying the
tax w(S) for not hitting S.

Note that the main difference between Algorithms Recursive-LR-HS
and LR-GHS is the fact that first simply adds an element to the solution found
by the recursive call (Line 8), while the latter adds the element only in case the
solution returned by the recursive call is infeasible without it (Lines 8-12). As
we shall see this modification makes sure that the solution returned is not only
feasible but also minimal.



212 Reuven Bar-Yehuda and Dror Rawitz

Algorithm 6 - LR-GHS(U,S, w): a local ratio smax-approximation algorithm
for generalized hitting set
1: if S = ∅ then
2: Return ∅
3: end if
4: Let S ∈ S
5: v ← argminu∈S {w(u)}
6: ε ← w(v)

7: Define w1(u) =

{
ε u ∈ S,

0 otherwise.

8: H ′ ← LR-GHS(U \ {v} ,S \ S(v), w − w1)
9: H ← H ′

10: if H is not feasible then
11: H ← H ∪ {v}
12: end if
13: Return H

We show that Algorithm LR-GHS computes minimal solutions. The proof
is by induction on the recursion. At the recursion basis the solution returned
is the empty set, which is both feasible and minimal. For the inductive step,
we show that H \ {u} is not feasible for every u ∈ H . First, if H = H ′, then
H is minimal since H ′ is minimal with respect to (U \ {v} ,S \ S(v)) by the
inductive hypothesis. Consider the case where H = H ′ ∪ {v}. If u �= v and
H \ {u} is feasible, then H ′ \ {u} is feasible with respect to (U \ {v} ,S \ S(v)),
and therefore H ′ is not minimal in contradiction to the inductive hypothesis.
Also, observe that v is added to H only if H ′ is not feasible.

It remains to show that Algorithm LR-GHS returns smax-approximate so-
lutions. The proof is by induction on the recursion. In the base case the so-
lution returned is the empty set, which is optimal. For the inductive step, H ′

is smax-approximate with respect to (U \ {v} ,S \ S(v)), and w2 by the induc-
tive hypothesis. Since w2(v) = 0, H is also smax-approximate with respect to
(U \ {v} ,S \ S(v)), and w2. Due to Observation 6, and the fact that H is min-
imal, it is also smax-approximate with respect to w1. Thus by the Local Ratio
Theorem H is smax-approximate with respect to w as well.

5 The Evolution of Both Methods

In this section we follow the evolution of both primal-dual and local ratio.

5.1 Applications to Various Problems

Covering problems and minimal solutions. During the early 1990’s the primal-
dual schema was used extensively to design and analyze approximation al-
gorithms for network design problems , such as the Steiner tree problem (see,
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e.g., [30, 1, 21]). In fact, this line of research has introduced the idea of using
minimal solutions to the primal-dual schema. Subsequently, several primal-dual
approximation frameworks were proposed. Goemans and Williamson [22] pre-
sented a generic primal-dual approximation algorithm based on the hitting set
problem. They showed that it can be used to explain many classical (exact
and approximation) algorithms for special cases of the hitting set problem, such
as shortest path, minimum spanning tree, and minimum Steiner forest. Follow-
ing [21], Bertsimas and Teo [15] proposed a primal-dual framework for covering
problems. As in [22] this framework enforces the primal complementary slackness
conditions while relaxing the dual conditions. However, in contrast to previous
studies, Bertsimas and Teo [15] express each advancement step as the construc-
tion of a single valid inequality, and an increase of the corresponding dual variable
(as opposed to an increase of several dual variables).

About ten years after the birth of the local ratio technique [9], Bafna et al. [3]
extended the technique in order to construct a 2-approximation algorithm for the
feedback vertex set problem. Their algorithm was the first local ratio algorithm
that used the notion of minimal solutions. Following Bafna et al. [3], Fujito [19]
presented a generic local ratio algorithm for a certain family of node deletion
problems. Later, Bar-Yehuda [6] presented a local ratio framework for covering
problems, which extends the one in [19] and can be used to explain many known
optimization and approximation algorithms for covering problems.

Other minimization problems. Both primal-dual and local ratio were also applied
to non-covering minimization problems. For example, in [11] the local ratio tech-
nique was used in the design of a 2-approximation algorithm for bounded integer
programs with two variables per constraint. Recently, Guha et al. [23] presented
a primal-dual 2-approximation algorithm to the capacitated vertex cover problem.

Jain and Vazirani [27] presented a 3-approximation algorithm for the metric
uncapacitated facility location problem. Their algorithm was the first primal-
dual algorithm that approximated a problem whose LP formulation contains
inequalities with negative coefficients. However, this algorithm deviates from
the primal-dual schema. Their algorithm does not employ the usual mechanism
of relaxing the dual complementary slackness conditions, but rather it relaxes
the primal conditions. (Note that this algorithm has a non-LP interpretation in
the spirit of local ratio [18].)

Bar-Yehuda and Rawitz [12] presented local ratio interpretations of known
algorithms for minimum s-t cut and the assignment problem. These algorithms
are the first applications of local ratio to use negative weights. The corresponding
primal-dual analyses are based on new IP formulations of these fundamental
problems that contain negative coefficients.

Maximization problems. By the turn of the 20th century both methods were
used extensively in the context of minimization algorithms. However, there was
no application of either method that approximated a maximization problem.
The first study to present a local-ratio and primal-dual approximation algo-
rithm for a maximization problem was by Bar-Noy et al. [4]. In this paper the
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authors used the local-ratio technique to develop an approximation framework
for resource allocation and scheduling problems. A primal-dual interpretation
was also presented.

Bar-Noy et al.’s [4] result paved the way for other studies dealing with max-
imization problems. In [5] Bar-Noy et al. developed approximation algorithms
for two variants of the problem of scheduling on identical machines with batch-
ing. Akcoglu at al. [2] presented approximation algorithms for several types of
combinatorial auctions.

5.2 Equivalence Between the Two Methods

It has often been observed that primal-dual algorithms have local ratio interpre-
tations, and vice versa. Bar-Yehuda and Even’s primal-dual algorithm for hitting
set [8] was analyzed using local ratio in [9]. The local ratio 2-approximation al-
gorithm for feedback vertex set by Bafna et al. [3] was interpreted within the
primal-dual schema [16]. The 2-approximation of a family of network design
problems by Goemans and Williamson [21] was explained using local ratio in [6]
(see also [7]). And, finally, Bar-Noy et al.’s [4] approximation framework for
resource allocation and scheduling problems was developed initially using the
local-ratio approach, and then explained it (in the same paper) in primal-dual
terms. Thus, over the years there was a growing sense that the two seemingly dis-
tinct approaches share a common ground, but the exact nature of the connection
between them remained unclear (see, e.g., [33], where this was posed as an open
question). The issue was resolved in a paper by Bar-Yehuda and Rawitz [13], in
which two approximation frameworks are defined, one encompassing the primal-
dual schema, and the other encompassing the local ratio technique, and showed
that these two frameworks are equivalent.

The equivalence between the paradigms is based on the simple fact that
increasing a dual variable by ε is equivalent to subtracting the weight function
obtained by multiplying the coefficients of the corresponding primal constraint
by ε from the primal objective function. In other words, this means that an
r-effective inequality can be viewed as an r-effective weight function and vice
versa. For example, the coefficients of the generalized vertex cover constraint∑

u∈S xu+xS ≥ 1 are the same as the coefficients of the weight function w1 from
Algorithm LR-GHS up to a multiplitive factor of ε. Furthermore, both primal-
dual analysis of Algorithm PD-GHS and local ratio analysis of Algorithm LR-
GHS are based on Observation 6. The equivalence between the methods is
constructive, meaning that an algorithm formulated within one paradigm can
be translated quite mechanically to the other paradigm.

5.3 Fractional Local Ratio and Fractional Primal-Dual

The latest important development in the context of local ratio is a new variant
of the local ratio technique called fractional local ratio [10]. As we have seen, a
typical local ratio algorithm is recursive, and it constructs, in each recursive call,
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a new weight function w1. In essence, a local ratio analysis consists of compar-
ing, at each level of the recursion, the solution found in that level to an optimal
solution for the problem instance passed to that level, where the comparison
is made with respect to w1. Thus, different optima are used at different recur-
sion levels. The superposition of these “local optima” may be significantly worse
than the “global optimum,” i.e., the optimum of the original problem instance.
Conceivably, we could obtain a better bound if at each level of the recursion
we approximated the weight of a solution that is optimal with respect to the
original weight function. This is the idea behind the fractional local ratio ap-
proach. More specifically, a fractional local ratio algorithm uses a single solution
x∗ to the original problem instance as the yardstick against which all interme-
diate solutions (at all levels of the recursion) are compared. In fact, x∗ is not
even feasible for the original problem instance but rather for a relaxation of it.
Typically, x∗ will be an optimal fractional solution to an LP relaxation of the
problem.

Recently, Bar-Yehuda and Rawitz [14] have shown that the fractional ap-
proach extends to the primal-dual schema as well. As in fractional primal-dual
the first step in a fractional primal-dual r-approximation algorithm is to com-
pute an optimal solution to an LP relaxation of the problem. Let P be the LP
relaxation, and let x∗ be an optimal solution of P . Next, as usual in primal-dual
algorithms, the algorithm produces an integral primal solution x and a dual
solution y, such that r times the value of y bounds the weight of x (we use
minimization terms). However, in contrast to other primal-dual algorithms, y is
not a solution to the dual of P . The algorithm induces a new LP, denoted by P ′,
that has the same objective function as P , but contains inequalities that may
not be valid with respect to the original problem. Nevertheless, we make sure
that x∗ is a feasible solution of P ′. The dual solution y is a feasible solution of
the dual of P ′. The primal solution x is r-approximate, since the optimum value
of P ′ is not greater than the optimum value of P .

5.4 Further Reading

A survey that describes the primal-dual schema and several recent extensions of
the primal-dual approach is given in [33]. A detailed survey on the local ratio
technique (including fractional local ratio) is given in [7].
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17. V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

18. A. Freund and D. Rawitz. Combinatorial interpretations of dual fitting and primal
fitting. In 1st International Workshop on Approximation and Online Algorithms,
volume 2909 of LNCS, pages 137–150. Springer-Verlag, 2003.

19. T. Fujito. A unified approximation algorithm for node-deletion problems. Dis-
crete Applied Mathematics and Combinatorial Operations Research and Computer
Science, 86:213–231, 1998.

20. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.



A Tale of Two Methods 217

21. M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

22. M. X. Goemans and D. P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In Hochbaum [25],
chapter 4, pages 144–191.

23. S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated vertex covering. Journal
of Algorithms, 48(1):257–270, 2003.

24. D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing, 11(3):555–556, 1982.

25. D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problem. PWS
Publishing Company, 1997.

26. K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility
location algorithms analyzed using dual-fitting with factor-revealing LP. Journal
of the ACM, 50(6):795–824, 2003.

27. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation.
Journal of the ACM, 48(2):274–296, 2001.

28. H. Karloff. Linear Programming. Progress in Theoretical Computer Science.
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Abstract. This paper is devoted to the max-flow algorithm of the au-
thor: to its original version, which turned out to be unknown to non-
Russian readers, and to its modification created by Shimon Even and
Alon Itai; the latter became known worldwide as “Dinic’s algorithm”.
It also presents the origins of the Soviet school of algorithms, which re-
main unknown to the Western Computer Science community, and the
substantial influence of Shimon Even on the fortune of this algorithm.

1 Introduction

The reader may be aware of the so called “Dinic’s algorithm” [4]1, which is one
of the first (strongly) polynomial max-flow algorithms, while being both one of
the easiest to implement and one of the fastest in practice. This introduction
discusses two essential influences on its fortune: the first supported its invention,
and the other furthered its publicity, though changing it partly.

The impact of the late Shimon Even on Dinic’s algorithm dates back to 1975.
You may ask how a person in Israel could influence something in the former
USSR, when it was almost impossible both to travel abroad from the USSR and
to publish abroad or even to communicate with the West? This question will
clear up after first considering the impact made by the early Soviet school of
computing and algorithms.

The following anecdote sheds some light on how things were done in the
USSR. Shortly after the “iron curtain” fell in 1990, an American and a Russian,
who had both worked on the development of weapons, met. The American asked:
“When you developed the Bomb, how were you able to perform such an enormous
amount of computing with your weak computers?”. The Russian responded: “We
used better algorithms.”

This was really so. Russia had a long tradition of excellence in Mathematics.
In addition, the usual Soviet method for attacking hard problems was to combine
pressure from the authorities with people’s enthusiasm. When Stalin decided to
develop the Bomb, many bright mathematicians, e.g., Izrail Gelfand and my
first Math teacher, Alexander Kronrod, put aside their mathematical studies
and delved deeply into the novel area of computing. They have assembled teams
1 In this paper, the references are given in chronological order.

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 218–240, 2006.
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of talented people, and succeeded. The teams continued to grow and work on
the theory and practice of computing.

The supervisor of my M.Sc. thesis was George Adel’son-Vel’sky, one of the
fathers of Computer Science. Among the students in his group at that time were
M. Kronrod (one of the future “Four Russians”, i.e. the four authors of [3]), A.
Karzanov (the future author of the O(n3) network flow algorithm [9]) and other
talented school pupils of A. Kronrod. This was in 1968, long after the Bomb
project had been completed. The work on the foundations of the chess pro-
gram “Kaissa”, created by members of A. Kronrod’s team under the guidance
of Adel’son-Vel’sky, was almost finished; “Kaissa” won the first world cham-
pionship in 1974. Adel’son-Vel’sky’s new passion became discrete algorithms,
which he felt had a great future.

The fundamental contribution of Adel’son-Vel’sky to computer science was
AVL-trees. He (AV) and Eugene Landis (L) published the paper [1] about AVL-
trees, which consists of just a few pages. Besides solving an important problem, it
presented a bright approach to data structure maintenance. While this approach
became standard in the USSR, it was still unknown in the West. No reaction
immediately followed their publication, until several years later another paper,
15 pages long, was published by a researcher (unknown to me), who understood
how AVL-trees work and explained this to the Western community, in its own
language. Since then, AVL-trees and the data structure maintenance approach
became corner-stones of computer science.

We, Adel’son-Vel’sky’s students, absorbed the whole paradigm of the Soviet
computing school from his lectures. This paradigm consisted of eagerness to
develop economical algorithms based on the deep investigation of a problem and
on the use of smart data structure maintenance and amortized running time
analysis as necessary components. All this became quite natural for us in 1968,
seventeen years before the first publication in the West on amortized analysis
by R. Tarjan [21]. Hence, it was not surprising that my network flow algorithm,
invented in January 1969, improved the Ford&Fulkerson algorithm by using and
maintaining a layered network data structure and employing a delicate amortized
analysis of the running time.

However, at that time, such an approach was very unusual in the West.
Shimon Even and (his then Ph.D. student) Alon Itai at the Technion (Haifa)
were very curious and intrigued by the two new network flow algorithms: mine
[4] and that of Alexander Karzanov [9] in 1974. It was very difficult for them
to decipher these two papers (each compressed into four pages, to meet the
page restriction of the prestigious journal Doklady). However, Shimon Even was
not used to giving up. After a three-day long effort, Even and Itai understood
both papers, except for the layered network maintenance issue. The gaps were
spanned by using Karzanov’s concept of blocking flow (which was implicit in my
paper), and by a beautiful application of DFS for finding each augmenting path.

It is well known that Shimon Even was an excellent lecturer. During the next
couple of years, Even presented “Dinic’s algorithm” in lectures, which he gave
in many leading research universities of the West. The result was important,
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the idea was fresh, the algorithm was very nice, and the combination of BFS
for constructing the layered network and DFS for operating it was fascinating.
“Dinic’s algorithm” was a great success and gained a place in the annals of
the computer science community. Hardly anyone was aware that the algorithm,
taught in many universities since then, is not the original version, and that
a considerable part of the beauty of its known version—combining BFS and
DFS—was due to the contribution of Even and Itai. Also, its name was rendered
incorrectly as [dinik] instead of [dinits].

The original paper, published in a Soviet journal, was not understood also by
others in the West. This algorithm and many other achievements of the Moscow
school of algorithms in the network flow area were published as a book [10].
This book was well known all over the former USSR, and students of leading
Soviet universities studied its contents as an advanced course. After more than 15
years, the book appeared in the West (in Russian) and was reviewed in English
by A. Goldberg and D. Gusfield [25]. A few years later, I finally explained the
original version of my algorithm, as published in [4], to Shimon Even.

The rest of the paper is devoted to the description of my algorithm and
its various versions and to the development of max-flow algorithms following
it. The presentation is a bit didactic; it shows that serious and devoted work
towards maximal understanding of a phenomenon and the best implementation
of algorithms may bring important, unexpected fruits.

2 The Original Dinitz’ Algorithm

2.1 The Max-Flow Problem and the Ford&Fulkerson Algorithm

Max-Flow Problem Let us recall the max-flow problem definition. A capaci-
tated directed graph G = (V, E, c), where c is a non-negative capacity function
on edges, with vertices s distinguished as the source and t as the sink is given. A
flow is defined as a function on the (directed) edges, f , satisfying the following
two laws:

– Capacity constraint : ∀e ∈ E : 0 ≤ f(e) ≤ c(e), and
– Flow conservation: ∀v ∈ V \ {s, t} :

∑
(v,u)∈E f(v, u)−

∑
(u,v)∈E f(u, v) = 0.

The quantity
∑

(v,u)∈E f(v, u)−
∑

(u,v)∈E f(u, v) is called the net flow from
v. The value of a flow f is defined as the net flow from s (which is equal to
the negated net flow from t). The task is to find a flow of the maximal value,
called “maximum flow” (see Figure 1a for illustration). Initially, some feasible
flow function, f0, is given, which is by default the zero function.

Another equivalent is formed by considering a flow as a skew-symmetric func-
tion on the pairs of vertices connected by at least one edge in the given graph.
For such a pair v, u, if one of the edges between them is absent, in E, we add
it to E with capacity and flow zero (clearly, the problem remains equivalent).
Given any feasible flow function, f , we define the new function f̄ by setting
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Fig. 1. (a) A flow network G and a maximum flow in it, of value 2 (the numbers denote
flows in edges; all edge capacities are 1). (b) Another flow, f , in same network, of value
1. In terms of Sections 3 and 5, f is “maximal” and “blocking”, resp. The dashed line
shows the unique augmenting path, P , which decreases the flow on the diagonal edge.
The residual capacity cf (P ) is 1, and pushing the flow along P results in the above
maximum flow. (c) The residual network Gf , where the residual capacity of all edges
is 1. The path as in (b) is the unique path from s to t in Gf .

f̄(v, u) = f(v, u) − f(u, v) for any edge (v, u) in the (extended) E. This repre-
sents the total flow from v to u on the pair of edges (v, u) and (u, v) together.
It is easy to see that f̄ satisfies the following three constraints:

– Capacity constraint : ∀(v, u) ∈ E : f̄(v, u) ≤ c(v, u),
– Skew symmetry: ∀(v, u) ∈ E : f̄(u, v) = −f̄(v, u), and
– Flow conservation: ∀v ∈ V \ {s, t} :

∑
(v,u)∈E f̄(v, u) = 0.

The net flow from v is defined then as
∑

(v,u)∈E f̄(v, u). To retrieve f from
f̄ use the formula f(v, u) = max(0, f̄(v, u)); it results in a feasible flow function
according to the original definition. Both transformations keep the flow value.
Hence, using any one of them may be considered legal.

We say that an edge (v, u) is saturated, if f̄(v, u) is equal to c(v, u). We call the
difference c(v, u)− f̄(v, u) the current or residual capacity of the edge (v, u), and
denote it by cf (v, u). In the original flow definition terms, the property of being
saturated is equivalent to the combined property: f(v, u) = c(v, u) & f(u, v) = 0,
while the residual capacity is equal to c(v, u)− f(v, u)+ f(u, v). The meaning of
residual capacity is “how much may be added to the flow from v to u on edges
(v, u) and (u, v) together”; the formulae use the essential equivalence between
increasing the flow in (v, u) and decreasing it in (u, v). Both flow representations
are widely known; while Ford and Fulkerson introduced the first one in [2], some
of the popular textbooks, e.g. [23], use the second one.

In what follows, we use the skew-symmetric form of flows, where the con-
cepts of saturated edge and residual capacity are easier to handle. Nevertheless,
for simplicity, we denote flows by regular Latin letters, e.g. f , not f̄ , and in
explanations, we refer f(v, u) as the flow on edge (v, u).

Ford&Fulkerson’s Algorithm The classic Ford&Fulkerson algorithm [2] finds
a maximum flow using the following natural idea: augmenting the current flow
iteratively, by pushing an additional amount of flow on a single source-sink path
at each iteration, as long as possible. Let f denote the current flow. A path from
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s to t is sought, such that none of its edges is saturated by f ; such a path is
called “augmenting”. When an augmenting path, P , is found, its current capacity
cf (P ) = mine∈P cf (e) > 0 is computed. Then, the flow on every edge of P is
increased by cf (P ) (of course, the corresponding update of the skew-symmetric
flow values at the opposite edges—decreasing them by cf (P )—is made as well;
we will not mention this, in what follows). As a result of this iteration, the
flow value grows by cf (P ) and at least one edge of P becomes saturated. For
illustration see Figure 1b.

For convenience sake, let us define the residual network Gf = (V, Ef ), where
Ef consists of all unsaturated edges in E. Now, an augmenting path is simply any
path in Gf from s to t (see Figure 1c). Clearly, it is easy to find an augmenting
path, if exists, given G and f : just run any search algorithm (e.g. BFS or DFS)
on Gf , from s. It is easy to see that, after each iteration, using an augmented
path P , the change of the residual network is as follows: it loses all the edges of
P which became saturated and acquires all the edges opposite to the edges of P
that were saturated before the iteration.

The famous theorem of Ford and Fulkerson states that when no augment-
ing path exists (i.e. t is disconnected from s in Gf ), the current flow is maxi-
mum. Clearly, if the initial data—capacities and the initial flow—is integer, the
current flow remains integer and eventually becomes maximum. That is, the
Ford&Fulkerson algorithm (henceforth, FF ) is finite and pseudo-polynomial in
the integer case. For the general case, Ford and Fulkerson provided an example
of a network with an execution of FF in it which runs infinitely; moreover, the
flow value converges at a quarter of the maximal possible one. So, the question of
the existence of a polynomial, or even of a finite or converging algorithm, for the
general case, remained open. This was settled affirmatively by J. Edmonds and
R.M. Karp [5] and by Y. Dinitz [4], independently. The algorithms suggested in
these papers are modifications of FF.

2.2 Layered Network Data Structure for Accelerating Iterations

Layered Network The initial intention of the author of [4] was just to acceler-
ate iterations of FF by means of a smart data structure. Recall that all the parts
of an iteration of FF, except for finding an augmenting path, P , cost time pro-
portional to the length of P , that is O(|P |) = O(|V |). Indeed, all computations
and updates are made along P , while the remainder of the data is not touched.
However, the search running on G costs O(|E|); one may even say Θ(|E|), ac-
cording to the search algorithms. Notice that Θ(|E|) is, in general, substantially
more than O(|P |) or O(|V |), and is O(|V |2) in the general case. So, finding an
augmenting path is the computational time bottleneck of an iteration of FF.

We will use BFS from s as the network scanning and path search algorithm.
Recall that BFS assigns to each vertex reachable from s its distance (the number
of edges in the shortest path) from s, and builds a tree rooted at s, where the
single edge incoming each vertex, except for s itself, comes from a vertex at the
distance less by one. A shortest path from s to t is restored as the chain of such
incoming edges, beginning from t. Let us try to save the information achieved
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at a BFS run for the following iterations. Notice that at least one edge of the
BFS tree, lying on the path from s to t, is saturated at the iteration, so it must
be erased from the tree. Thus, s and t become disconnected in this tree, and
there are no easy means to connect them again using unsaturated edges. For
illustration see Figure 2a,b.
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Fig. 2. (a) A network G (edge capacities are not shown). (b) A BFS tree from s in
G, with the path from s to t in it shown in bold. The edge that would be saturated
as a result of the flow augmentation along it is shown crossed. (c) The network L(s),
w.r.t. the zero initial flow. (d) The layered network L̂ = L̂(s, t), of length 3, and a path
from s to t in it. Two its crossed edges are saturated by the flow augmentation. (e) The
network L̂ with the saturated edges removed. (f) RightPass began with removing dead-
end a and the edges outgoing from it. (g) After vanishing of L̂, the new L̂ = L̂(s, t),
w.r.t. the current flow, is of length 4 (its second layer is encircled by a dotted line). The
flow augmentation along the path shown in bold saturates the crossed edge. Vertex a
will be cleaned from L̂. (h) The updated layered network; the augmentation along its
single path from s to t saturates the crossed edge. (i) The residual network Gf after
vanishing of L̂ of length 4. BFS execution in Gf marks as reachable from s vertices s,
a, c, and d, but not t. Hence, the current flow is maximum.

Let us try to enrich the data structure while building it. Notice that BFS
arranges vertices into layers, according to their distance from s. The BFS tree
includes only the first edge found, leading to each vertex from the previous layer;
it ignores all other edges coming to it from that layer, though they may be no
less useful than that first edge. The idea is to keep all those edges in our data
structure.
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We begin with some definitions for an arbitrary digraph H . For an edge (v, u),
the vertex v is called its tail and u its head. Let a source vertex s be given. Let
dist(v, u) denote the distance to a vertex u from vertex v; we denote dist(v) =
dist(s, v). Let the ith vertex layer Vi be the set of vertices with dist(v) = i
(where V0 = {s}), and the ith edge layer Ei be the set of all the edges of H
going from Vi−1 to Vi. We define L(s) as the digraph (∪Vi,∪Ei). Notice that a
straightforward extension of BFS builds L(s), with the same running time O(|E|)
as that of the regular BFS; in what follows we call it “the extended BFS”. It is
easy to see, by the properties of BFS, that L(s) is the union of all the vertices
and edges of all shortest paths from s in H . For illustration see Figure 2c.

Since we are interested only in the paths from s to another given vertex, t,
let us prune L(s) to L̂(s, t), as in [4]. The network L̂(s, t) contains � layers, where
� = dist(s, t) is called its length. The vertices of its ith layer, V̂i, are characterized
by a double property: they are at distance i from s, while t is at distance �− i
from them. The ith layer of its edges, Êi, consists of all the edges of H going from
V̂i−1 to V̂i. The pruning of L(s) to L̂(s, t) is easy: we just run the extended BFS
once more, but on L(s) from t, using the opposite edge direction. For illustration
see Figure 2d.

Claim. The layered sub-graph L̂(s, t) is the union of all the vertices and edges
residing on all the shortest paths from s to t.

Proof. For any shortest path from s to t, its ith vertex is at distance i from
s, while t is at distance � − i from it. Conversely, for any vertex v in V̂i, there
is a path from s to v of length i and a path from v to t of length � − i; their
concatenation is a shortest path from s to t going via v. Similar reasons suffice
for the edges of Êi. ��

An easy property of L(s) and L̂(s, t) is that they have no “dead-ends”: ver-
tices without any incoming edge, except for s (for both L(s) and L̂(s, t)) and
those with no outgoing edge, except for t (for L̂(s, t) only). Due to the layered
structure and to this property, finding a shortest path from s to t, given any one
of L(s) and L̂(s, t), is almost as simple and exactly as fast (in time linear in its
length) as using the BFS tree, by means of the following procedure:

PathFinding : Starting from t, repeatedly choose one of the incoming edges
and pass to its tail. Necessarily, after � steps the layer 0, that is s, is reached.
The path consisting of the chosen edges (in the reverse order), is a shortest
path from s to t.

Remark : Notice that given L̂(s, t), a similar procedure executed from s, in
the direction of edges, also constructs a path from s to t, but in its natural order.

Layered Network Maintenance Suppose that, given a flow network G and
a flow f in it, we had built the sub-graph L̂(s, t) of the residual network Gf

(by two extended BFSs). Having found an augmenting path, by PathF inding
in L̂(s, t), we pushed some amount of flow along it (as in FF). A natural idea
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is to find the next augmenting path, somehow using the existing L̂(s, t). We
accomplish this by adjusting it to the new flow.

Throughout the algorithm, we use a layered network data structure. It is
a general digraph, whose vertex set consists of consequent layers, so that the
leftmost one is {s}, while each its edge goes from some layer to the next one; L(s)
and L̂(s, t) are particular examples of a layered network. We begin the algorithm
by initializing our data structure L̂ as L̂(s, t) of the residual network w.r.t. the
initial flow. The maintenance of L̂, after an iteration, using an augmenting path
P , is as follows. We first remove from L̂ all the edges of P that became saturated;
clearly, we can extend the flow changing procedure of FF to provide a list of such
edges, Sat, keeping its running time O(�). Notice that updated L̂ is contained
in the current residual network, since only the edges, such as above, disappeared
from the residual network as a result of the flow change. Therefore, any path
from s to t found in the updated L̂ would be an augmenting path, w.r.t. the
current flow. For illustration see Figure 2e.

Observe further that applying PathF inding to updated L̂ might be stuck
at a dead-end vertex with no incoming edges. In order to restore the original
property of the layered network, to have no dead-ends, let us apply to it the
following procedure Cleaning. We initialize the left queue of edges Ql and
right queue of edges Qr by the list of saturated edges Sat. The main loop of
Cleaning consists of the right and left passes, processing edges in Qr and Ql,
respectively, one by one (in an arbitrary order), as follows:

RightPass For each edge e ∈ Qr, if its right end-vertex has no incoming edges,
then it is deleted from L̂, together with all its outgoing edges, while inserting
those edges into Qr (for illustration see Figure 2e,f).

LeftPass For each edge e ∈ Ql, if its left end-vertex has no outgoing edges, then
it is deleted from L̂, together with all its incoming edges, while inserting those
edges into Ql (for illustration see Figure 2g,h).

Notice that any deleted element of L̂ is absent in all paths from s to t in the
current L̂; in another words, the above procedure does not destroy any path
from s to t in L̂. If Cleaning empties L̂, it reports on its vanishing.

It is easy to see that the cleaned L̂ contains no dead-ends (for illustration see
Figure 2g,h). Indeed, a vertex becomes a dead-end when its last incoming or last
outgoing edge is removed from L̂; thus, any such event should be detected when
processing that edge and that vertex should be removed from L̂ during Cleaning.
Now, assuming that Cleaning has not caused L̂ to vanish, PathF inding in the
cleaned L̂ should be executed without any problem. This allows us to find an
augmenting path and to execute the entire next iteration of FF once more in
O(�) time. Notice that this time includes neither the time of building L̂, nor of
its cleaning. This is intentional; it is quite usual to count the cost of initializing
and maintaining a data structure separately.

Such accelerated iterations are executed until L̂ vanishes. The part of the
algorithm, beginning from the building of a layered network and ending at its
vanishing point, is called a phase. The algorithm consists of consequent phases,
repeated until the next layered network construction reveals that it cannot be
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built. This happens when the current residual network Gf contains no path
from s to t. In this case, by the Ford&Fulkerson theorem, the current flow f is
maximum, i.e. the problem is solved. For illustration see Figure 2.

In what follows, we refer to the suggested algorithm as the Dinitz algorithm,
or DA. Its general description is as follows (the iteration invariant is discussed
and proved in Section 2.3):
The Original Dinitz Algorithm
Input :

a flow network G = (V, E, c, s, t),
a feasible flow f , in G (equal to zero, by default).

/* Phase Loop: */
dowhile
begin

Build L̂(s, t) in Gf , using the extended BFS;
if L̂(s, t) = ∅ then return f
else L̂← L̂(s, t);
/* Iteration Loop: */
while L̂ is not empty do
/* Iteration Invariant : L̂ is the union of all shortest augmenting paths */
begin

P ← PathF inding(L̂);
Sat← FlowChange(P );
/* Cleaning(L̂): */
begin

Removal of edges in Sat;
Qr, Ql ← Sat;
RightPass(Qr);
LeftPass(Ql);

end;
end;

end;

2.3 Algorithm Analysis

Two aspects of DA have to be analyzed:

– How much does it cost to maintain the layered network?
– How many iterations are contained in a phase? How many phases are con-

tained in the algorithm?

Layered Network Maintenance Cost It is easy to construct an extremal
example, where the entire layered network L̂ = L̂(s, t) of size O(|E|) vanishes
after a single iteration. For example, if the first edge layer consists of just a single
edge from s, of the minimal capacity, then the first executed iteration saturates
this edge and thus disconnects t from s.
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We use the amortized analysis for bounding the total cost of all cleanings dur-
ing a single phase. Let us charge the cost of all relevant maintenance operations
to removed elements of L̂, as follows. A removed edge pays for the operations
applied to it, to the total of O(1), and for checking its two end-vertices; note that
checking whether a list it is empty or not costs O(1), as well. A removed vertex
pays for the operations applied to itself, except for checking as above, and for
the arrangement of the loop to remove its incident edges (but not for iterations
of that loop), which also totals O(1). Therefore, the overall maintenance cost
during a phase is O(|E|+ |V |), which is O(|E|), since L̂ is connected.

Running Time w.r.t. Iterations and Phases Recall that the construction
of the layered network, when initializing a phase, costs O(|E|). Hence, the total
cost of all layered network data structure operations, except for PathF inding,
is O(|E|) per phase. Recall that the total cost of an accelerated iteration is
O(�) = O(|V |), where � is the length of the layered network.

Let us denote the total number of iterations of DA by #it and the number
of phases by #ph (it might be infinite, in general). Then, the total running time
of DA is bounded as O(#it · |V |+#ph · |E|). First, this is better than the bound
O(#it·|E|) of FF. Indeed, DA is much faster than FF, even if FF uses only short-
est augmenting paths (see in [13] the results of an experiment comparing them,
among other max-flow algorithms). Second, the essential structure of FF, when
accelerated, remains exactly the same, so neither finiteness proofs, nor bounds
for the number of iterations ever proved for FF suffer from the acceleration.

However, we still have no provable reason to consider DA be theoretically
faster than FF. Indeed, there might be just a single iteration during a phase,
in the worst case, and there is no provable evidence that the average number of
iterations per phase #it

#ph is higher than Ω(1). To summarize for the time being,
DA seems to be just helpful heuristics for FF.

The Maintenance of the Layered Network Is Perfect Let us continue
analyzing the data structure, presenting its purity and beauty. Let us call a
method of data structure maintenance perfect if, before every iteration, the data
structure is as if built from scratch based on the current data. The method chosen
in the original paper [4] and described above is such. The following proposition
implies straightforwardly that L̂ coincides with L̂(s, t) of the current residual
network before every iteration of DA.

Proposition 1. After any iteration in the phase of DA with the layered network
of length �, the updated layered network is the union of all augmenting paths of
length �, while there is no shorter augmenting path (w.r.t. the current flow).

Proof. Let us consider an arbitrary iteration in the phase with the layered net-
work of length �. We relate to the function d(v) on vertices as the distance from
s to v in the residual network at the beginning of the phase. In other words, d(v)
is the number of the layer to which v was related by the first extended BFS,
during the process of the building of L(s).
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Recall that, during this phase, the flow on an edge (v, u) is increased only if
d(u) = d(v) + 1; only those edges may be saturated and thus removed from Gf .
Also, the flow on an edge (u, v) is decreased only if d(v) = d(u)− 1; only those
edges may be unsaturated and thus added to Gf ; we call the added edges “new”.
An immediate consequence is that the value of function d is defined for any vertex
reachable from s in the current residual network Gf (equivalently, any such
vertex was reachable from s also at the beginning of the phase). Another easy
consequence is that no edge saturated during a certain phase can be unsaturated
later during the same phase. Thus, no edge removed from Gf can be restored to
it during the same phase.

First, let us consider augmenting paths of length � without new edges (hence-
forth “old paths”), and prove that they are the same in the updated L̂ and in
the current Gf (we use the generic notion Gf for the residual network, assuming
f changes from iteration to iteration).

Let us consider an arbitrary old path, P , of length �; by construction, it was
contained in the layered network L̂ at the beginning of the phase. Assume that
P is contained in Gf after some iteration. This means that none of its edges
were saturated during the phase. So, none of its edges were removed from L̂ as
saturated. Hence, the existence of P in L̂ is self-supporting, since it prevents its
nodes from ever being removed from L̂ as dead-ends. Therefore, P is contained
in the current layered network L̂. Now assume that P is contained in the current
L̂. This means that none of its edges were saturated during the phase. Thus, P
is contained in Gf . Summarizing, the layered network and the residual network
contain the same old paths of length �. Recall that there exist no old paths of
length less than �.

We now prove that the length of any “new” (not old) path, P ′, is at least
� + 2. Let P ′ contain k new edges; since P is new, k ≥ 1. Let us concentrate on
the change of function d along P ′ (recall that d is defined at all its vertices). Its
total increase, from d(s) = 0 to d(t) = �, is exactly �. Along any one of its old
edges, d increases by at most 1; along any one of its new edges, d decreases by
exactly 1 (for illustration see Figure 3). Hence, the number of old edges should
be at least � + k. That is, the length of P ′ is at least � + 2k ≥ � + 2, as required.

+1
+1

+1
+1

s t s t

a b

-1

Fig. 3. (a) A layered network of length 3, and an augmenting path in it, shown in bold.
(b) A part of the residual network after pushing the flow along this path, and a path
from s to t in it, shown bold. The encircled number near an edge shows the change of
d along it.
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Thus, we see that after any iteration of the phase, there is no augmenting
path of length less than �, while all the augmenting paths of length �, if any, (are
old and) are contained in the current L̂.

Moreover, since cleaning restores the property of L̂ of having no dead-ends,
reasoning, as in the proof of Claim in Section 2.2, shows that all the vertices and
edges of L̂, if any, belong to the paths from s to t of length �. This suffices. ��

At this point, consider the moment after the last iteration of some phase.
At that moment, L̂ had vanished, so it contains no path from s to t of length
�. By Proposition 1, there is no augmenting path of length � or shorter, w.r.t.
the current flow. Therefore, the distance from s to t in Gf is at least � + 1,
and so is the length of the layered network built at the beginning of the next
phase (if the flow is not yet maximum). Thus, as a by-product of the perfect
method of maintaining the layered network data structure, we have arrived at
the remarkable property of DA that the length of the layered network grows
strictly from phase to phase.

The Polynomial Time Bound of DA An easy consequence of the foregoing
property is that there are at most |V | − 1 phases in DA, since the distance from
s to t cannot exceed |V | − 1.

It is easy to see that the number of iterations during a single phase is at most
|E|, since at least one out of at most |E| edges of L̂ is removed from it at every
iteration. Therefore, the total running time at each phase, which consists of the
accelerated iteration times and the layered network building and maintenance
time, is O(|E| · |V |+ |E|) = O(|V ||E|). Thus, DA is finite and its total running
time is O(|V |2|E|). We arrive at our main result:

Theorem 1. The Dinitz algorithm builds a maximum flow in time O(|V |2|E|).

Summary Let us summarize what is established on the behavior of DA.

– DA consists of phases. Each one contains iterations changing the flow using
shortest augmenting paths of a fixed length, �.

– At the beginning of each phase, the extended BFS builds in O(|E|) time a
layered network data structure, L̂, of length �. The layered network is con-
stantly maintained during the phase as the union of all shortest augmenting
paths of length �, until it vanishes, in total time O(|E|).

– The layered structure of L̂ and absence of dead-ends in it allow for the
execution of every iteration of FF in O(�) = O(|V |) time.

– The layered network is strictly pruned after each iteration of FF. Therefore,
the number of iterations at each phase is bounded by |E|.

– When the layered network vanishes, there is no augmenting path of length
lesser than or equal to �, w.r.t the current flow. Hence, the length of the next
layered network, equal to the length of the currently shortest augmenting
path, is strictly greater than �.
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– Since the length of L̂ grows from phase to phase, there are at most |V | − 1
phases.

– When DA stops, the current flow is maximum.
– The running time of DA is O(|V |2|E|).

A Historical Remark In Adel’son-Vel’sky’s Algorithms class, the lecturer had
a habit of giving the problem to be discussed at the next meeting as an exercise
to students. The DA was invented in response to such an exercise. At that time,
the author was not aware of the basic facts regarding FF, in particular, of the
idea of decreasing the current flow on opposite edges during a flow push along a
path. As a consequence from the then naive view, Proposition 1 turned out to be
quite natural, following from just exhausting the set of all paths of length �, since
the issue of “new” augmenting paths had not arisen at all. So, the entire effort
of the inventor was devoted to suggesting the best accelerating data structure.

Because of the above gap in knowledge, the first time bound was O(|V ||E|),
since the total number of iterations had been erroneously considered to be |E|,
according to the maximal possible number of saturated edges. After learning
about the inverse edges of Ford and Fulkerson, the author completed the proof
of Proposition 1 and corrected the time bound.

Ignorance sometimes has its merits. Very probably, DA would not have been
invented then, if the idea of possible saturated edge desaturation had been known
to the author.

3 The Version of Shimon Even and Alon Itai

There are various approaches for using a data structure for a sequence of iter-
ations of an algorithm. The perfect way, as chosen in [4] and described above,
is not the goal from the point of view of the algorithm itself. The updated data
structure may not be like one built from scratch, but it should work; the only
requirement is that the desired bound for the running time can be proved. This
was the approach chosen by Shimon Even and Alon Itai. In what follows, we
first relax some requirements for the layered network data structure, using the
notation defined in Section 2. Then we briefly describe the version of DA of Even
and Itai, as it appears in the Even’s textbook [14].

Note that using the two-terminal layered network L̂(s, t) is a luxury; the
one-terminal layered network L(s) is quite sufficient. Indeed, in order for
PathF inding to work, a layered network should have no dead-ends in the direc-
tion of s (i.e. without incoming edges), while the existence of dead-ends in the
direction of t does no harm. Hence, DA may switch to the layered network L,
which is initialized by L(s). In fact, the building of L(s) may be stopped upon
finishing the �th layer.

Moreover, during the update of L, DA may remove dead-ends in the direction
of s only; that is, at Cleaning, it is sufficient to execute RightPass(Qr) only.
Then, L vanishes when t is removed from it. Notice that the original property of
L(s), to be the union of all the shortest paths from s to all the vertices reachable
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from it, is not preserved by such maintenance. However, this is not essential to
DA, since it uses the shortest paths to t only. The right invariant of L is to contain
all the augmenting paths of length � (not to be their union), while there is no
shorter augmenting path. Obviously, this property holds after the initializing L
at the beginning of a phase. Its maintenance during the phase, from iteration
to iteration, is proved like the proof of Proposition 1. Notice that the weaker
invariant above implies the property of increasing the layered network’s length
from phase to phase, as well. Therefore, the analysis of the number of phases,
the number of iterations, and the running time of DA, for the version where the
one-terminal layered network is used, is the same as in Section 2.3.

Even and Itai go much farther while changing DA. They admit dead-ends
in L in both directions; thus, they cancel Cleaning and are urged to give up
using PathF inding. They even “burn their bridges behind them” by finding a
path from s to t in L beginning from s. They suggest another way to find an
augmenting path: a search of the DFS type, combined with encountered dead-
ends removal. Each iteration of their version of DA is as follows.

Their DFS begins to build a path from s, incrementing it edge by edge, from
one layer to the next. Such path building stops either by arrival at t (a success),
or at another dead-end. In the last case, DFS backtracks to the tail of the edge
leading to that dead-end, while removing that edge from L as useless (i.e. not
contained in any path from s to t in L). After that, DFS continues as above,
incrementing the current path when possible or backtracking and removing the
last edge from L, otherwise. This process ends either when DFS is at s and has
no edge to leave it, indicating that the phase is finished, or when it arrives at t.
In the latter case, an augmenting path is built. Then, a flow change is executed
along that path, as at FF, while removing from L all its edges which have become
saturated; recall that there is at least one such edge.

The running time of a phase, after executing the extended BFS to initialize
L, is counted by Even and Itai as divided into intervals between arrivals at
dead-ends. First, each such event causes the removal of an edge from L, so there
may be at most |E| such events. Secondly, there may be at most � forward
steps of DFS between neighboring events, which costs O(�). Except for those
steps, there may be either a single backtracking and edge removal, which costs
O(1), or a flow change, together with saturated edge removals, which costs O(�).
In any case, every interval between consequent events costs O(�), which totals
O(� · |E|) = O(|V ||E|) per phase, as desired.

Summarizing our discussion on the version of DA suggested by Even and Itai,
we see that their use of a non-cleaned layered network, where ad-hoc cleaning
is made “on route”, is quite successful: not only the same O(·) time bounds are
acquired, but also the practical effectiveness (where constants are concerned as
well) is not lost. Needless to say, their version not only has its own real beauty,
but is somewhat “sexy” running DFS on the layered network constructed by
(extended) BFS.

Regarding proof of the crucial property of DA, that the length of the layered
network increases from phase to phase, Even and Itai use no data structure



232 Yefim Dinitz

invariant, maintained from iteration to iteration, in contrast with the original
paper [4]. Instead, they explicitly prove the above property, by analyzing the
situation when a layered network vanishes. They characterize such a situation
by the property of the flow accumulated in L during the phase being “maximal”
(as distinguished from “maximum”), defined as a flow such that any path from s
to t in L contains at least one edge saturated by it (a “blocking” flow, in notation
of Karzanov [9]). Lemma 5.4 in [14] proves that after arriving at a maximal flow
in the layered network of length �, the currently shortest augmenting path is
longer than �.

It is interesting that the arguments in the proof of that Lemma are similar to
those in the proof of Proposition 1. However, the reader may see clearly that the
overall emphases, in the presentation of Dinic’s algorithm at [14] are quite dif-
ferent from those of the original presentation of DA in [4], in both the algorithm
iteration and the algorithm analysis. The origin of this difference is apparently
the rejection of the data structure maintenance approach, occurring everywhere
in the version of Even and Itai. See Section 1 for a possible explanation of this
phenomenon.

4 Implementation of DA by Cherkassky

At the implementation stage, nothing extra should be left over. The program
designer should have removed all the non-essential parts, not only to decrease the
volume of programming work and/or decrease constant factors at the running
time, but also to reduce the probability of bugs: a simpler program has less
bugs, and thus causes less risk of arriving, sometimes, at a sudden malfunction,
or what is the worst, at a wrong result. The only restriction, while choosing
an implementation, is the equivalence of the designed program to the original
algorithm, which is required for the validity of the program.

From the 1970s, Boris Cherkassky worked on the quality implementation of
various flow algorithms and on the experimental evaluation of their performance,
see [13, 27]. His recommendations for the best implementation of DA are as
follows:

– No layered network—neither L(s) nor L̂(s, t)—should be built. It is sufficient
to compute just the layer number (“rank”) dist(v, t) for every vertex up to
the distance � = dist(s, t). This may be done by a single run of the usual
BFS from t on the unsaturated edges, in the inverse edge direction.2

– The entire phase is conducted by a single DFS from s. Any saturated edge
or edge not going from a vertex of rank i to a vertex of rank i + 1 is just
skipped (instead of using the list of edges in the layered network).

– No edge removal is needed. If DFS backtracks on some edge, that edge will
not participate in the remaining part of DFS automatically.

2 We could retain the natural direction of edges and the ranks dist(s, v), for consistency
with the preceding discussion. Switching to the ranks dist(v, t) of Cherkassky is done
for better intuition and for consistency with the push-relabel technique, discussed in
Section 5.
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– When the outgoing edges from the current vertex, v �= s, t, are exhausted
(v becomes a dead-end), DFS backtracks from v. If s becomes a dead-end,
DFS (and the phase) is completed.

– When arriving at t, the current DFS path is an augmenting path. The usual
flow change is made along it. After this, DFS continues from the tail of the
edge closest to s which has been saturated during this flow change.

– The only network data needed during the phases is the residual capacity cf

for all the edges. After the last phase, the flow is restored as the difference
of capacities c and cf .

The resulting implementation is as follows:

Implementation of DA by Cherkassky

/* Input : */
a flow network G = (V, E, c, s, t),
a feasible flow f , in G (equal to zero, by default).

Initialization:
compute ∀e ∈ E : cf (e) = c(e)− f(e);

/* Phase Loop: */
dowhile
begin

compute ∀v ∈ V : rank(v) = dist(v, t), by BFS from t on edges
with cf > 0, in the inverse edge direction;

if rank(s) =∞ then begin f ← c− cf ; return f ; end;
while DFS from s do
begin

/∗ P denotes the current path and x the current vertex of DFS ∗/
any edge (x, y) s.t. cf (x, y) = 0 or rank(y) �= rank(x)−1 is skipped;
if x = t then
begin

ε← min{cf (e) : e ∈ P};
for edges (v, u) of P , from t downto s do
begin

cf (v, u)← cf (v, u)− ε; cf (u, v)← cf (u, v) + ε;
if cf (u, v) = 0 then x← u;

end;
/∗ continue DFS from x ∗/
end;

end;
end;

In Section 5, we will see that such a simplification of DA, especially using
vertex ranks instead of layered networks, has a deep influence on the following
research on max-flow algorithms.
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5 On the Further Progress of Max-Flow Finding

In this section, we consider some issues related to DA itself and the development
of the max-flow algorithms area from DA and on, on the level of ideas. Note
that many interesting results and even directions in the max-flow area remain
untouched or are mentioned quite briefly. We emphasize using layered networks
and/or distance ranks of vertices for max-flow finding.

Edmonds’ and Karp’s Version of FF Edmonds and Karp proved the finite-
ness and polynomial time of FF, if only the shortest augmenting paths are used
in it. The achieved time bound is O(|V ||E|2) = O(|V |5), which is higher than
O(|V |2|E|) = O(|V |4) of DA, since iterations are made in O(|E|) time each, as
usual in FF. A talk on their work was given at a conference held in the middle of
1968, just half a year before the invention of DA. However, their result became
known in Moscow and was told to the author only at the end of 1972, after the
journal version of their paper [5] had been published.

The Running Time of DA for Special Cases The “iron curtain” worked
in both directions. In January 1971, at a conference in Moscow, the author and
Alexander Karzanov reported on new time bounds of DA for specific network
types [6, 7]. In [6], it is shown that if DA is executed on a network with unit
capacities, the running time of each phase is bounded by O(|E|) (since each
edge of L̂ is saturated after participating in a one or two augmenting paths).
Hence, the total running time of DA is O(|V ||E|) for such a network. In [7], the
flow network modeling of the bipartite n×n matching is considered. The number
of phases of DA in such a modeling network is shown to be O(

√
n). Using the

result of [6], the running time of DA for solving the bipartite n × n matching
is found to be O(

√
nm) = O(n5/2), where m is the number of pairs allowed for

matching.
An algorithm for the bipartite n×n matching, similar to DA, with the same

time bound of O(
√

nm) = O(n5/2), was suggested by Hopkroft and Karp [8].
Their algorithm is the only one cited in the West. Various time bounds for DA
working in networks of special types, similar to those in [6, 7], were suggested by
Even and Tarjan in [11]; in particular, they showed that the number of phases
of DA for a network with unit capacities is bounded as O(min{|E|1/2, |V |2/3}),
and thus its running time is O(min{|E|1/2, |V |2/3}|E|). Still, the textbook [14]
published in 1979 does not mention the results of [6, 7], when reviewing these
topics.

Karzanov’s Algorithm Karzanov was the first to leave the augmenting paths
idea, in the research on max-flow finding. He suggested the “preflow-push” ap-
proach, as follows. He observed that at each phase of DA, it is sufficient to
somehow find a flow in a layered network L̂(s, t), such that any path from s
to t contains an edge saturated by it; he calls such a flow “blocking”. His algo-
rithm (henceforth, KA) finds a blocking flow in O(|V |2) time, thus arriving at
an O(|V |3) max-flow algorithm [9].
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Here, we provide an outline of KA. Each finding of a blocking flow begins
from Pushing. It scans vertices of L̂(s, t) in their BFS order, starting from s,
and pushes flow from the current vertex, v, on its outgoing edges, as much as
possible. If the edges outgoing from v, v �= s, have enough capacity to remove
from it all the flow brought to it on incoming edges, then a flow balance is created
at v; otherwise, a “flow excess” at v is created, to be fixed farther on. After
finishing Pushing, the flow function is infeasible, in general, with a flow excess
at some vertices; such a function is called a preflow. Then, KA begins Balancing,
which scans vertices with a flow excess but without outgoing unsaturated edges.
Balancing pushes flow from such a vertex back on its incoming edges. Then, a
flow excess is created at its preceding vertices, where outgoing unsaturated edges
may exist. Then, a new Pushing is executed, followed by a new Balancing, and
so on until balancing the preflow at all the vertices, except for s. The result is a
desired blocking flow.

It is worth to mention that the time bounds O(|V |2|E|) and O(|V |4) for
DA and O(|V |3) for KA are tight; the corresponding problem instances and
executions of algorithms are provided in [10, 17].

Improvements upon DA and KA Much effort was made, based on DA
and KA, to lower the running time bound of max-flow finding; the aim was to
acquire an O(|V ||E|) max-flow algorithm. Following is a brief review, cut before
the push-relabel algorithm.

Cherkassky first simplified KA and later suggested a “hybrid” of DA and
KA running in time O(|V |2

√
|E|) [12]. Galil accelerated his algorithm to run

in time O(|V |5/3|E|2/3) [15]. Galil and Naaman suggested an acceleration of
augmenting path finding in DA by means of storing parts of previously found
augmenting paths [16]; Shiloach discovered a similar algorithm independently a
bit later. Their algorithms run in time O(|E||V | log2 |V |), which differs from the
“goal time” only in a poly-logarithmic factor. Sleator and Tarjan improved the
algorithm from [16] to run in time O(|E||V | log |V |) by using trees instead of just
paths [19]. These low running times were achieved by using smart, but heavy,
data structures.

Towards the Push-Relabel Algorithm The other max-flow research move-
ment was slow, its explicit direction was to simplify the pushing-balancing tech-
nique of Karzanov. As seen a-posteriory, its implicit goal was the “push-relabel”
approach, suggested finally in [20, 22]. Let us show an example of such a devel-
opment by analyzing the algorithm of Boris Cherkassky [13].3

One of the crucial steps taken in [13] is to cancel the previous goal of each
phase, to construct a feasible flow in the layered network, and hence to eliminate
Balancing. Instead, the new requirement is to achieve a flow balance at every
vertex only by the end of the algorithm’s execution. The main technical obser-
vation, while transforming KA, is that Balancing at some vertex is equivalent
3 The O(|V |3) max-flow algorithm described by Shiloach and Vishkin in [18] may also

be considered as a precursor of one of the push-relabel algorithms.
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to Pushing from it in future, when it will appear in some layered network at a
greater distance from the sink t. As in his implementation of DA (see Section 4),
Cherkassky does not build layered networks, but just computes the vertex ranks
d(v) = dist(v, t).

There are steps of only the following two types in his algorithm:

Push For a vertex with a flow excess, pushing from it as much flow as possible
to the vertices of a rank smaller by one.

Relabel For vertices without unsaturated edges outgoing to vertices of a rank
smaller by one, recomputing their ranks.

For the reader familiar with the push-relabel approach, the remarkable similarity
of the above steps with those of the generic push-relabel algorithm is obvious.
(The names of the types are taken from [22], not from [13].)

Moreover, Cherkassky never computes new vertex ranks from scratch, except
at the beginning of the algorithm—he maintains them. That is, he just increases
the current vertex ranks as needed. This maintenance is done as that of the global
layered network , which was sketched in [4] and given later in detail in [10] (see
the next subsection). So, also the maintenance of vertex ranks is equivalent to
the relabeling method of [22]. Summarizing, the algorithm of [13] is one of the
possible implementations of the generic push-relabel algorithm [22].

The essential difference between the algorithm [13] and the approach of [22]
is that the former is rigid, while the latter is generic, i.e. leaving freedom to
choose any order for processing vertices with a flow excess. Leftovers of the phase
structure of DA and KA prevented Cherkassky from canceling the division of
his algorithm into phases, inherited from DA. At each phase of his algorithm,
all the vertices are processed in the BFS order from farther to closer to the sink,
and after that, all vertex ranks are updated. He uses the technique of the global
layered network for accelerating the algorithm only. He does not notice that it
is able to maintain vertex ranks after each elementary push at the same total
cost, so that after any push, the algorithm is ready and free to push at any other
vertex requiring it. This oversight prevented the algorithm [13] from becoming
generalized to the generic push-relabel algorithm.

Usually, in the modern research community, relaxations of suggested meth-
ods, which get rid of various leftovers, are made very quickly after the publication
of an interesting result. However, because of the ”iron curtain”, the results of
[13] were unknown in the West, preventing further development by Western re-
searchers4. The push-relabel approach was invented by a Ph.D. student, Andrew
Goldberg, in 1985 [20].

We may hope that all our efforts to the right direction are not in vain. The
following remarkable observation, heard by the author from his teacher Alexan-
der Kronrod, may be related to the invention of the push-relabel approach, to
some extent: “A solution to an open problem is always found much more easily,
if that problem has already been solved by somebody else, even in a case where
the current solver is completely unaware of the existing solution”.
4 Ahuja et al., in [26], relates even seminal introducing distance labels, (i.e. vertex

ranks) instead of layered networks, to [20].
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Perfect Maintenance of the One-Terminal Layered Network For com-
pleteness, let us briefly describe the method of perfect maintaining of the one-
terminal layered network L(s) [10]. Note that using it may eliminate the phase
borders from both the original DA and its implementation given in Section 4.

The layered network L is initialized by building L(s) w.r.t. the initial flow
by the extended BFS in time O(|E|). After a flow change, we take care of the
vertices of L that lose the last incoming edge (called “dead-ends”). At DA, such
a vertex is only removed from the data structure, and now we must put it into its
correct layer. After removing the saturated edges, we set the temporary distance
from s to each dead-end v at d′(v) = d(v)+1. Additionally, every outgoing edge
(v, u) is removed from the list of edges incoming to u. If, as a result, u becomes
a dead-end, we apply the same operation to it.

We process the dead-ends in the non-decreasing order of temporary distances
d′. For each dead-end v, we check whether there is an incoming edge from the
layer d′(v)−1. If so, we assign d(v) = d′(v) and scan its incident edges: we insert
into L the edges going to v from the layer Ld(v)−1 and those going from v to the
layer Ld(v)+1. Otherwise, we increase d′(v) by one, to be processed once more.
It may be easily shown that this processing updates L to become L(s) w.r.t. the
new flow. In total, each vertex is moved to the next layer at most |V | − 2 times,
which implies that the total cost of updating L is O(|V ||E|) during the entire
layered network maintenance.

Maintaining vertex ranks, as in [13, 22], differs from the above method in
beginning from t, reversing edge directions, and removing all operations with
edges.

After Inventing the Generic Push-Relabel Algorithm The previously
best time bound for max-flow finding was improved by Goldberg and Tarjan
in [22]; their algorithm runs in time O(|V ||E| · log(|V |2/|E|)). The algorithm
combines the push-relabel approach, choosing a vertex of the maximal rank at
each push step, with the dynamic tree technique of [19] (changed a bit). After
that, more (slight) improvements of running time for max-flow finding were
made; we do not list them, referring to [28] for a review.

Interestingly, after the invention of the push-relabel approach, the develop-
ment of max-flow algorithms returned to the blocking flow techniques, that is
to dividing an algorithm execution into phases, each computing a blocking flow
in a certain auxiliary network. In a couple of years, Goldberg and Tarjan [24]
achieved a result finer than that of [22], by suggesting an O(|E| · log(|V |2/|E|))
algorithm for finding a blocking flow in an arbitrary acyclic graph (the need to
use acyclic graphs, which generalize layered, arisen when building a fast min-cost
max-flow algorithm). Thus, the above time bound O(|V ||E| · log(|V |2/|E|)) for
max-flow finding was achieved by a blocking flow algorithm too.

The above-mentioned results leave a polynomial gap between the general and
the unit capacity cases: the bounds on the number of blocking flow computations
in the former case is O(|V |) and in the latter, O(min{|E|1/2, |V |2/3}). For the
case when capacities are integers bounded by U , Goldberg and Rao [29] sug-



238 Yefim Dinitz

gest a blocking flow algorithm with O(min{|E|1/2, |V |2/3} · log U) blocking flow
computations.

They combine the idea of increasing the distance from the source to the sink
after each phase with another interesting requirement for the result of a phase.
Let us denote by Δf the residual flow value, i.e. the value of the maximum flow
in Gf . Edmonds and Karp considered in [5] the “thickest” augmenting path
strategy of FF, that is such that a path P maximizing the value of cf (P ) is
chosen at each iteration. They show that Δf decreases by at least the fraction
1
|E| , i.e. becomes at most (1 − 1

|E|)Δf , after each iteration. Hence, the number
of iterations of this version of FF in the integer case is O(|E| · log U).

In the algorithm of Goldberg and Rao [29], the auxiliary network for each
phase is acyclic, instead of layered. They choose a certain threshold depending
on Δf and assign to each edge a length of one or zero, depending on whether
its residual capacity is below or above that threshold, respectively. They use the
distances w.r.t. these edge lengths to construct an auxiliary graph; in order to
make it acyclic, they contract all the zero length cycles. After each phase, either
the distance from s to t increases, or Δf decreases by a certain fraction. As a
consequence, the number of phases is bounded by O(min{|E|1/2, |V |2/3} · log U).
A blocking flow at each phase is found by the algorithm from [24], thus arriving
at the O(min{|E|1/2, |V |2/3}|E| · log U · log(|V |2/|E|)) total running time. Thus,
the time bound for the unit capacity case is extended to the integral capacity
case at the expense of a factor of log U · log(|V |2/|E|). Note that unless U is very
big, the time bound achieved in [29] for general flow networks is better than
O(|V ||E|).
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Abstract. We survey recent results on disjoint NP-pairs. In particular,
we survey the relationship of disjoint NP-pairs to the theory of proof
systems for propositional calculus.

1 Introduction

A disjoint NP-pair is a pair (A, B) of nonempty, disjoint sets A and B such
that both A and B belong to the complexity class NP.3 We let DisjNP denote
the collection of all disjoint NP-pairs. A separator of a disjoint NP-pair (A, B)
is a set S such that A ⊆ S and B ⊆ S (Figure 1). A fundamental question
is whether (A, B) has a separator belonging to P. In this case the pair is P-
separable; otherwise, it is P-inseparable.

To state this fundamental question differently, we want to know whether
there is an efficient algorithm whose set of yes-instances includes the set A and
whose set of no-instances includes the set B. The algorithm behaves arbitrarily
on instances in the complement of A∪B. That is, a disjoint NP-pair is a promise
problem. To learn about promise problems we refer to Goldreich’s survey paper
[8] in this volume. The second author first became interested in promise prob-
lems, and specifically, in disjoint NP-pairs, in 1982 while working with Shimon
Even and Yacov Yacobi. At that time they formulated the problem of crack-
ing a public-key cryptosystem as a promise problem and observed that secure
public-key cryptosystems do not exist unless P-inseparable pairs exist [4].

Disjoint NP-pairs also relate naturally to the theory of proof systems for
propositional calculus [21, 20] and that is the connection we will explore here.

2 Preliminaries

The notations ≤p
m and ≤p

T denote polynomial-time-bounded many-one and Tur-
ing reducibility, respectively. Thus, we write A≤p

mB if there is a function f com-
putable in polynomial time, such that for all instances x, x ∈ A⇔ f(x) ∈ B and
� Research partially supported by NSF grant CCR-0307077.
3 Nonemptyness ensures A �⊆ B and B �⊆ A, which simplifies several proofs.

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 241–253, 2006.
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Σ∗

A B

S S

Fig. 1. An NP-pair (A,B) that is separated by S.

we write A≤p
TB if there is an oracle Turing machine M such that A = L(M, B)

is the language accepted by M using B as the oracle.
We let PF denote the class of all polynomial-time-computable functions. A

function f is honest if there is a polynomial q such that for every y ∈ range(f)
there exists x ∈ dom(f) such that f(x) = y and |x| ≤ q(|y|). If f ∈ PF is an
honest function and A ∈ NP, then f(A) ∈ NP.

To review the definition of standard exponential-time complexity classes,

E =
⋃
{DTIME(kn) | k ≥ 1}

and
NE =

⋃
{NTIME(kn) | k ≥ 1}.

For any complexity class C, coC = {L | L ∈ C}.
A nondeterministic Turing machine that has at most one accepting compu-

tation for any input is called by Valiant [27] an unambiguous Turing machine.
Let UP denote the set of languages accepted by unambiguous Turing machines
in polynomial time. Obviously, P ⊆ UP ⊆ NP, and it is not known whether
either inclusion is proper. One reason UP is an interesting complexity class is
because there exists a one-to-one, honest function f ∈ PF whose inverse f−1 is
not computable in polynomial time if and only if P �= UP [9].

A set A is sparse if there is a polynomial p such that for all n, A contains at
most p(n) strings of length n. We let SPARSE denote the collection of all sparse
sets.

3 Propositional Proof Systems

Resolution calculus is one well-known example of a propositional proof system.
A propositional formula φ in disjunctive normal form is a tautology if and only if
there exists a proof w in the resolution system showing that ¬φ is not satisfiable.
(Recall that a formula φ is a tautology if and only if its negation ¬φ is not
satisfiable.) All propositional proof systems have three properties in common:
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1. Correctness: If there is a proof in the system, then the formula is indeed
a tautology.

2. Completeness: Every tautology can be proved within the system.
3. Verifiability: The validity of a proof can be easily verified.

Cook and Reckhow [3] formalized the intuitive notion of a proof system as fol-
lows: A propositional proof system (proof system for short) is a total function
f : Σ∗ → TAUT such that f is onto and polynomial-time-computable. (TAUT
denotes the set of tautologies.) For any tautology φ, if f(w) = φ, then w is a
proof in the system f (f -proof) showing that φ is a tautology.

That the validity of proofs is easy to verify is formalized by the requirement
that f is polynomial-time-computable. Furthermore, the definition requires that
only tautologies have proofs (correctness) and that every tautology has a proof
(completeness).

The following function shows that the resolution calculus can be interpreted
as a propositional proof system in the formal sense.

f(w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ : if w = (φ, u) and u is a resolution refutation of ¬φ

φ : if w = (φ, u) and |u| ≥ 2|φ| and φ is a tautology

true : otherwise

Note that in this definition, both lines, the first and the second one, are necessary.
The first line makes sure that tautologies in disjunctive normal form have f -
proofs not much longer than the corresponding resolution proofs. The second
line takes care of all the tautologies that are not in disjunctive normal form.
Note that in this line, the test for tautology can be done by exhaustive search
in polynomial time, since 2|φ| ≤ |w|.

A propositional proof system f is not necessarily honest; it is possible that
a formula φ ∈ TAUT has only exponentially long proofs w, i.e., f(w) = φ and
|w| = 2Ω(|φ|). A proof system f is polynomially bounded if the function f is
honest. Cook and Reckhow demonstrated that NP = coNP if and only if there
exists a polynomially-bounded proof system, and they proposed attacking the
question of whether NP equals coNP by studying propositional proof systems.

Let f and f ′ be two proof systems. We say that f simulates f ′ if there
is a polynomial p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗,
f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). So for every f ′-proof w, h(w) is an f -
proof of the same tautology. If f simulates f ′, then f -proofs are not much longer
than f ′-proofs. If additionally h ∈ PF, then we say that f p-simulates f ′.

A proof system is optimal (resp., p-optimal) if it simulates (resp., p-simulates)
every other proof system. The notion of simulation between proof systems is
analogous to the notion of reducibility between problems. Using that analogy,
optimal proof systems correspond to complete problems.

It is not known whether there exist optimal propositional proof systems, but
the question is interesting, because if there is an optimal proof system f , then
there is a polynomially-bounded proof system if and only if f is polynomially-
bounded. The question of whether optimal propositional proof systems exist
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has been studied in detail. Kraj́ıček and Pudlák [19, 13] showed that NE =
coNE implies the existence of optimal proof systems. Ben-David and Gringauze
[1] and Köbler, Meßner, and Torán [12] obtained the same conclusion under
weaker assumptions. On the other hand, Meßner and Torán [18] and Köbler,
Meßner, and Torán [12] proved that existence of optimal proof systems results
in the existence of ≤p

m -complete sets for the promise class NP∩SPARSE. In the
same paper, they showed that there exist p-optimal proof systems only if the
complexity class UP has a many-one complete set. These results hold relative to
all oracles. Therefore, optimal proof systems exist relative to any oracle in which
NE = coNE holds. Kraj́ıček and Pudlák [13], Ben-David and Gringauze [1], and
Buhrman et al. [2] constructed oracles relative to which optimal proof systems
do not exist. In addition, NP∩ SPARSE does not have complete sets relative to
the latter oracle.

Razborov [21] related the study of propositional proof systems to disjoint NP-
pairs. For every propositional proof system f , he associated a canonical disjoint
NP-pair. Furthermore, he showed that if f is an optimal proof system, then the
canonical pair for f is a complete disjoint NP-pair. We will explain these results
in Section 5, but first, in order to define the notion of completeness for disjoint
NP-pairs, it is necessary to describe reducibilities between disjoint NP-pairs.

4 Reductions Between Disjoint NP-pairs

Since disjoint pairs are simply an equivalent formulation of promise problems,
disjoint pairs easily inherit the natural notions of reducibilities that exist between
promise problems [4, 26, 9]. Hence, completeness and hardness notions follow
naturally also. We review these here.

Definition 1 Let (A, B) and (C, D) be disjoint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D), (A, B)≤pp
m(C, D),

if for every separator T of (C, D), there exists a separator S of (A, B) such
that S≤p

mT .
2. (A, B) is Turing reducible in polynomial-time to (C, D), (A, B)≤pp

T (C, D),
if for every separator T of (C, D), there exists a separator S of (A, B) such
that S≤p

TT .

The definitions tell us that for every separator of (C, D), there is a separator
of (A, B) that is no more complex. In particular, if (C, D) is P-separable, then
it follows immediately that (A, B) is P-separable. On the other hand, these
definitions are nonuniform. Looking at (A, B)≤pp

T (C, D), for example, if S1 is a
separator of (C, D), then there is an oracle Turing machine M1 such that the
set L(M1, S1) is a separator of (A, B). However, for a different separator S2 of
(C, D), there might be a different Turing machine M2 so that L(M2, S2) is a
separator of (A, B). This nonuniformity makes these definitions difficult to work
with. Fortunately, they have the following equivalent formulations [9, 6]. Observe
that the formulation for many-one reducibility simplifies enormously.
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Theorem 2 (uniform reductions for pairs). Let (A, B) and (C, D) be dis-
joint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D) if and only if
there exists a polynomial-time computable function f such that f(A) ⊆ C
and f(B) ⊆ D.

2. (A, B) is Turing reducible in polynomial-time to (C, D) if and only if there
exists a polynomial-time oracle Turing machine M such that for every sepa-
rator T of (C, D), there exists a separator S of (A, B) such that S≤p

TT via
M . That is, S = L(M, T ).

Now we clearly have uniformity. The same oracle Turing machine M is used
for all separators T .

The abbreviation ‘pp’ in≤pp
T , for example, stands for polynomial-time-bounded

promise reduction. We retain the promise problem notation in order to distin-
guish reductions between disjoint NP-pairs from reducibilities between sets.

If (A, B)≤pp
m (C, D) and (C, D)≤pp

m (A, B), then we write (A, B)≡pp
m (C, D); if

(A, B)≤pp
T (C, D) and (C, D)≤pp

T (A, B), then we write (A, B)≡pp
T (C, D). Obvi-

ously, ≡pp
m and ≡pp

T are equivalence relations.
Keeping with common terminology, a disjoint pair (A, B) is ≤pp

m -complete
(≤pp

T -complete) for the class DisjNP if (A, B) ∈ DisjNP and for every disjoint
pair (C, D) ∈ DisjNP, (C, D)≤pp

m (A, B) ((C, D)≤pp
T (A, B), respectively).

Razborov raised the question of whether DisjNP contains complete pairs (i.e.,
complete disjoint NP-pairs). Although we are primarily interested in the ques-
tion of whether there exist many-one complete pairs, let’s pause for a moment
to consider the question of whether there exist Turing-complete pairs. Even, Sel-
man, and Yacobi [4] conjectured that DisjNP does not contain a disjoint pair
all of whose separators are NP-hard (i.e., ≤p

T -hard for NP.) The conjecture has
strong consequences, for it implies that NP �= coNP, NP �= UP, and no public-
key cryptosystem is NP-hard to crack [4, 9]. For example, if NP = coNP, then
for every NP-complete S, the pair (S, S) is in DisjNP and all of its separators
are NP-hard (since S is the only separator). We conjecture that DisjNP does not
contain Turing-complete pairs, but it would be difficult to prove this, because
the the latter conjecture implies the former conjecture (which in turn implies
NP �= coNP).

Proposition 3 If there do not exist ≤pp
T -complete pairs for the class DisjNP,

then DisjNP does not contain a disjoint pair all of whose separators are NP-hard.

Proof. Suppose there is a disjoint pair (A, B) ∈ DisjNP such that all separators
are NP-hard. We claim that (A, B) is ≤pp

T -complete for DisjNP. Let (C, D)
belong to DisjNP. Let S be an arbitrary separator of (A, B). Note that S is NP-
hard and C ∈ NP. So C≤p

TS. Since C is a separator of (C, D), this demonstrates
that (C, D)≤pp

T (A, B). ��

Glaßer et al. [6] constructed an oracle relative to which Turing-complete pairs
do not exist for DisjNP.
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5 Canonical Disjoint NP-pairs

The canonical pair of a propositional proof system f [21] is the disjoint NP-pair
(SAT∗, REFf ) where

SAT∗ = {(x, 0n)
∣∣x ∈ SAT and n ∈ N} and

REFf = {(x, 0n)
∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Informally, SAT∗ is the set of satisfiable formulas (i.e., formulas whose nega-
tions are not tautologies), and REFf is the set of easily refutable formulas (i.e.,
formulas whose negations have short proofs). It is straightforward to see that
SAT∗ and REFf are disjoint and that they belong to NP.

The following easy to prove proposition states a strong connection between
proof systems and disjoint NP-pairs.

Proposition 4 Let f and g be propositional proof systems. If g simulates f ,
then (SAT∗, REFf )≤pp

m (SAT∗, REFg).

Proof. By assumption there exists a total function h : Σ∗ → Σ∗ and a poly-
nomial p such that for all y, g(h(y)) = f(y) and |h(y)| ≤ p(|y|). We claim
that (SAT∗, REFf )≤pp

m (SAT∗, REFg) via reduction r where r(x, 0n) df=(x, 0p(n)).
Clearly, if (x, 0n) ∈ SAT∗, then (x, 0p(n)) ∈ SAT∗ as well. Let (x, 0n) ∈ REFf ,
i.e., ¬x is a tautology and there exists y such that |y| ≤ n and f(y) = ¬x. So for
y′ df=h(y) it holds that |y′| ≤ p(n) and g(y′) = ¬x which shows (x, 0p(n)) ∈ REFg.

��

Razborov’s result (Corollary 8 below) states that if f is an optimal proof sys-
tem, then (SAT∗, REFf ) is a ≤pp

m -complete NP-pair. This result is an immediate
consequence of Proposition 4 and the following new result [7]. The latter states
that every disjoint NP-pair is many-one equivalent to the canonical NP-pair of
some propositional proof system.

Theorem 5. For every disjoint NP-pair (A, B) there exists a proof system f
such that (SAT∗, REFf )≡pp

m (A, B).

Proof. Let 〈·, ·〉 be a polynomial-time computable, polynomial-time invertible
pairing function such that |〈v, w〉| = 2|vw|. Choose g that is polynomial-time
computable and polynomial-time invertible such that A≤p

mSAT via g (such a g
exists, since SAT is a paddable NP-complete set). Let M be an NP-machine that
accepts B in time p. Define the following function f .

f(z) df=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
¬g(x) : if z = 〈x, w〉, |w| = p(|x|), M(x) accepts along path w

x : if z = 〈x, w〉, |w| �= p(|x|), |z| ≥ 2|x|, x ∈ TAUT

true : otherwise
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The function is polynomial-time computable, since in the second case, |z| is
large enough so that x ∈ TAUT can be decided in deterministic time O(|z|2).
In the first case of f ’s definition, x ∈ B and so g(x) /∈ SAT. It follows that
f : Σ∗ → TAUT. The mapping is onto, since for every tautology x,

f(〈x, 02|x|
〉) = x.

Therefore, f is a propositional proof system.

Claim 6 (SAT∗, REFf )≤pp
m (A, B).

Choose arbitrary elements a ∈ A and b ∈ B. The reduction function h is as
follows.

1 input (x, 0n)
2 if n ≥ 2|x| then
3 if x ∈ SAT then output a else output b
4 endif
5 if g−1(x) exists then output g−1(x)
6 output a

The exhaustive search in Line 3 is possible in quadratic time in 2|x| ≤ n. So
h ∈ PF.

Assume (x, 0n) ∈ SAT∗. If we reach Line 3, then we output a ∈ A. Otherwise
we reach Line 5. If g−1(x) exists, then it belongs to A. Therefore, in either case
(output in Line 5 or in Line 6) we output an element from A.

Assume (x, 0n) ∈ REFf (in particular ¬x ∈ TAUT). So there exists y such
that |y| ≤ n and f(y) = ¬x. If we reach Line 3, then we output b. Otherwise
we reach Line 5 and so it holds that |y| ≤ n < 2|x| and ¬x differs from the
expression true (since the expression true does not start with the symbol ¬).
Therefore, f(y) = ¬x must be due to the first case in the definition of f . It
follows that g−1(x) exists. So we output g−1(x) which belongs to B (again by
the first case of f’s definition). This shows Claim 6.

Claim 7 (A, B)≤pp
m (SAT∗, REFf ).

The reduction function is h′(x) df=(g(x), 02(|x|+p(|x|))). If x ∈ A, then g(x) ∈
SAT and therefore, h′(x) ∈ SAT∗. Otherwise, let x ∈ B. Let w be an accepting
path of M(x) and define z

df=〈x, w〉. So |w| = p(|x|) and |z| = 2(|x| + p(|x|)).
By the first case of f’s definition, f(z) = ¬g(x). Therefore, h′(x) ∈ REFf . This
proves Claim 7 and finishes the proof of Theorem 5. ��

Corollary 8 (Razborov) If there exists an optimal propositional proof system
f , then (SAT∗, REFf ) is a ≤pp

m -complete NP-pair.

Proof. Suppose that f is an optimal proof system. Let (A, B) be an arbitrary
disjoint NP-pair. By Theorem 5, let g be a proof system such that

(A, B)≡pp
m (SAT∗, REFg).
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We only use (A, B)≤pp
m (SAT∗, REFg) and the fact that (SAT∗, REFg) ∈ DisjNP.

Since f is optimal, f simulates g. Thus, by Proposition 4,

(SAT∗, REFg)≤pp
m (SAT∗, REFf ).

Then, (A, B)≤pp
m (SAT∗, REFf ), from which it follows that (SAT∗, REFf ) is ≤pp

m -
complete for DisjNP. ��

Also, we state the following corollary. It is convenient for us to define the
Turing-degree of a pair (A, B) ∈ DisjNP as follows:

d(A, B) = {(C, D) ∈ DisjNP | (A, B) ≡pp
T (C, D)}.

So the Turing-degree of (A, B) is the class of pairs that are equivalent to
(A, B) with respect to Turing reductions. In a canonical way, Turing reductions
extend from pairs to Turing-degrees: d(A, B)≤pp

T d(C, D) if (A, B)≤pp
T (C, D).

The degree structure of disjoint NP-pairs is the structure of the partial ordering
({d(A, B)

∣∣ (A, B) ∈ DisjNP},≤pp
T ).

Corollary 9 Disjoint NP-pairs and canonical pairs for proof systems have iden-
tical degree structure.

Every disjoint NP-pair we believe to be P-inseparable is many-one equivalent
to some canonical pair that is also P-inseparable. We cannot prove that P-
inseparable pairs exist, but there is evidence for their existence, for example, if
P �= UP or if P �= NP ∩ coNP. On the other hand, the hypothesis that P �= NP
does not seem to be sufficient to obtain P-inseparable disjoint NP-pairs. Homer
and Selman [11] constructed an oracle relative to which P �= NP and all disjoint
NP-pairs are P-separable.

Glaßer et al. [6] constructed an oracle O1 relative to which optimal proof sys-
tems exist, and therefore, relative to which many-one complete disjoint NP-pairs
exist. Also, they constructed an oracle O2 relative to which many-one complete
disjoint NP-pairs exist, but optimal proof systems do not exist. So relative to
this oracle, the converse of Corollary 8 does not hold. Relative to O2, there is
a propositional proof system f whose canonical pair is complete, but f is not
optimal. Hence, there is a propositional proof system g such that the canonical
pair of g many-one reduces to the canonical pair of f , but f does not simulate g.
The results of this section (Proposition 4, Theorem 5, and Corollary 9) present
tight connections between disjoint NP-pairs and propositional proof systems.
Nevertheless, relative to this oracle, the relationship is not as tight as one might
hope for.

In light of Corollary 9, we should try to understand the degree structure of
DisjNP. Glaßer, Selman, and Zhang [7] prove that between any two comparable
and inequivalent disjoint NP-pairs (A, B) and (C, D) there exist P-inseparable,
incomparable NP-pairs (E, F ) and (G, H) whose degrees lie strictly between
(A, B) and (C, D). Their result is an analogue of Ladner’s result for NP [14].
The proof is based on Schöning’s formulation [25] and uses techniques of Regan
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[22, 23]. Thus, assuming that P-inseparable disjoint NP-pairs exist, the class
DisjNP has a rich, dense, degree structure—and each of these degrees contains
a canonical pair.

Observe that the premise of the following theorem is true as long as there
exist P-inseparable disjoint NP-pairs.

Theorem 10. Suppose there exist disjoint NP-pairs (A, B) and (C, D) such that
A, B, C, and D are infinite, (A, B)≤pp

T (C, D), and (C, D) �≤pp
T (A, B). Then there

exist incomparable, strictly intermediate disjoint NP-pairs (E, F ) and (G, H)
between (A, B) and (C, D) such that E, F , G, and H are infinite. Precisely, the
following properties hold:

– (A, B)≤pp
m (E, F )≤pp

T (C, D) and (C, D) �≤pp
T (E, F ) �≤pp

T (A, B);
– (A, B)≤pp

m (G, H)≤pp
T (C, D) and (C, D) �≤pp

T (G, H) �≤pp
T (A, B);

– (E, F ) �≤pp
T (G, H) and (G, H) �≤pp

T (E, F ).

Messner [16, 17] unconditionally proved the existence of propositional proof
systems f and g such that f does not simulate g and g does not simulate f .
Further he shows that the simulation order of propositional proof systems is
dense. However, from this we cannot conclude a dense degree structure for dis-
joint NP-pairs. There exist infinite, strictly increasing chains of propositional
proof systems (using simulation as the order relation ≤) such that all canonical
pairs of these proofs systems belong to the same many-one degree of disjoint
NP-pairs.

6 Uniform Enumerability

In this section we describe some recent results of Glaßer, Selman, and Sengupta
[5] on reductions between disjoint NP-pairs. The main result is a list of equivalent
statements to the assertion that there exists a many-one complete disjoint NP-
pair, which, taken together, strongly suggests that the assertion does not hold.

We begin our exposition with the following definition of strongly many-one
reductions, as defined by Köbler, Meßner, and Torán [12].

Definition 11 ([12]) (C, D) strongly many-one reduces to (A, B) in polyno-
mial time, (C, D)≤pp

sm (A, B), if there is a polynomial-time computable function
f such that f(C) ⊆ A, f(D) ⊆ B, and f(C ∪D) ⊆ A ∪B.

Clearly, the added condition f(C ∪D) ⊆ A ∪B states that instances violating
the promise of (C, D) are mapped into instances that violate the promise of
(A, B) (Figure 2). Equivalently, f−1(A) ⊆ C and f−1(B) ⊆ D. Therefore, if
(C, D)≤pp

sm (A, B) via f , then C≤p
mA via f , and D≤p

mB via f .
Whereas Razborov proved that existence of an optimal proof system implies

existence of a many-one complete disjoint NP-pair, Köbler, Meßner, and Torán
proved with the same hypothesis existence of a complete disjoint NP-pair with
respect to strongly many-one reductions. In particular, the result of Glaßer,
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f

A

B

C

D

Fig. 2. A strong many-one reduction f from (A,B) to (C, D).

Selman, and Sengupta shows that these results of Razborov and Köbler, Meßner,
and Torán are equivalent. That is, there exists a many-one complete disjoint
NP-pair if and only if there exists a complete disjoint NP-pair with respect
to strongly many-one reductions. Nevertheless, it is apparently true that the
“stronger reduction” really is stronger. This is easy to see if we permit disjoint
NP-pairs whose components are finite sets. However, for pairs whose components
are infinite and coinfinite, strongly many-one reductions are identical to many-
one reductions if and only if P = NP. We show this result now:

Theorem 12. The following are equivalent:

1. P �= NP.
2. There are disjoint NP-pairs (A, B) and (C, D) such that A, B, C, D, A ∪B,

and C ∪D are infinite, and (A, B)≤pp
m (C, D) but (A, B) �≤pp

sm(C, D).

Proof. If P = NP, then given disjoint NP-pairs (A, B) and (C, D), A, B, C, and
D are all in P. Given any string x, it can be determined whether x ∈ A, x ∈ B,
or x ∈ A ∪B, and x can be mapped appropriately to some fixed string in C, D,
or C ∪D. Therefore, (A, B)≤pp

sm (C, D).
For the other direction, consider the clique-coloring pair (C1, C2) such that

C1 = {〈G, k〉
∣∣G has a clique of size k}, (1)

and
C2 = {〈G, k〉

∣∣G has a coloring with k − 1 colors}. (2)

This is a disjoint NP-pair, and is known to be P-separable [15, 20]. Let S be
the separator that is in P. Note that (C1, C2)≤pp

m (S, S) via the identity function.
(Note that this reduction is also invertible.) Let

C = {〈G, 3〉
∣∣G is a cycle of odd length with at least 5 vertices}.
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Let S1 = S − C and S2 = S − C. Both S1 and S2 are in P. Since any odd cycle
with at least 5 vertices is not 2-colorable, and does not contain any clique of size
3, C ∩ C1 = ∅, and C ∩ C2 = ∅. Therefore, (C1, C2)≤pp

m (S1, S2) via the identity
function. Assume that (C1, C2)≤pp

sm(S1, S2). Then C1≤p
mS1, and C2≤p

mS2. Hence
C1 and C2 are in P. This is impossible, since NP �= P, and C1 and C2 are NP-
complete. Thus, (C1, C2) �≤pp

sm(S1, S2). ��

Next we mention smart reductions. Grollmann and Selman [9] defined smart
reductions in order to analyze the conjecture of Even, Selman, and Yacobi [4]
that we discussed earlier.

Definition 13 ([9]) A smart reduction from (C, D) to (A, B) is a Turing re-
duction from (C, D) to (A, B) such that if the input belongs to C ∪D, then all
queries belong to A ∪B.

A disjoint pair (A, B) ∈ DisjNP is smart ≤pp
T -complete for DisjNP if for every

(C, D) in DisjNP there is a smart reduction from (C, D) to (A, B). Note that
if (A, B) is ≤pp

m -complete for DisjNP, then (A, B) is smart ≤pp
T -complete for

DisjNP as well.
Let {Ni}i be an effective enumeration of nondeterministic, polynomial-time

bounded Turing machines. Now we define the central concept of this section.

Definition 14 DisjNP is uniformly enumerable if there is a total computable
function f : Σ∗ → Σ∗ ×Σ∗ such that

1. ∀(i, j) ∈ range(f)[(L(Ni), L(Nj)) ∈ DisjNP].
2. ∀(C, D) ∈ DisjNP ∃(i, j)[(i, j) ∈ range(f) ∧ C = L(Ni) ∧D = L(Nj)].

The following theorem is a slight simplification of the main result of Glaßer,
Selman, and Sengupta [5].

Theorem 15. The following are equivalent.

1. There is a ≤pp
m -complete disjoint NP-pair.

2. There is a ≤pp
sm -complete disjoint NP-pair.

3. There is a smart ≤pp
T -complete disjoint NP-pair.

4. DisjNP is uniformly enumerable.

There is a long history of equating having complete sets with uniform enu-
merations. Hartmanis and Hemachandra [10], for example, proved this for the
class UP, and it holds as well for NP ∩ co-NP and BPP. More recently, Sad-
owski [24] proved that there exists an optimal propositional proof system if and
only if the class of all easy subsets of TAUT is uniformly enumerable.4 It seems
inconceivable that there would exist a total computable function that lists ex-
actly the disjoint NP-pairs, and that is why we don’t believe that many-one

4 By Corollary 8, if DisjNP is not uniformly enumerable, then the class of all easy
subsets of TAUT is also not uniformly enumerable.
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complete disjoint NP-pairs exist, and hence, don’t believe that optimal proof
systems exist.

The most interesting direction of the proof is to show that if there exists a
many-one complete disjoint NP-pair, then DisjNP is uniformly enumerable. We
sketch this direction now:

Let (A, B) be a ≤pp
m -complete disjoint pair. Let NA and NB be NP-machines

that accept A and B, respectively. Let {fi}i be an effective enumeration of
polynomial-time computable functions. Input to the enumerator is a number
encoding a triple 〈i, j, k〉. Output is a pair 〈a, b〉 to be described.

Given 〈i, j, k〉, we define nondeterministic Turing machines N ′
1 and N ′

2 as
follows. On input x, N ′

1 computes fi(x) = q and then simulates both NA(q) and
NB(q). At most one of these accepts. N ′

1 accepts x if x ∈ L(Nj) and q ∈ L(NA).
N ′

2 is defined similarly, except that N ′
2 accepts x if x ∈ L(Nk) and q ∈ L(NB).

Let a and b be the indices of N ′
1 and N ′

2, respectively, and define f(〈i, j, k〉) =
〈a, b〉. It is easy to see that L(Na) and L(Nb) are disjoint. So for all i, j, and k,
(L(Na), L(Nb)) ∈ DisjNP, where f(〈i, j, k〉) = 〈a, b〉.

Now let (C, D) be a disjoint NP-pair. For some indices j and k, C = L(Nj)
and D = L(Nk). Then (C, D)≤pp

m (A, B) by fi, for some i. Consider, 〈a, b〉 =
f(〈i, j, k〉). The remainder of the proof, which is easy, shows that C = L(Na)
and D = L(Nb).
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Abstract. The notion of promise problems was introduced and initially
studied by Even, Selman and Yacobi (Inform. and Control, Vol. 61, pages
159–173, 1984). In this article we survey some of the applications that
this notion has found in the twenty years that elapsed. These include the
notion of “unique solutions”, the formulation of “gap problems” as cap-
turing various approximation tasks, the identification of complete prob-
lems (especially for the class SZK), the indication of separations between
certain computational resources, and the enabling of presentations that
better distill the essence of various proofs.

1 Introduction

The Theory of Computation excels in identifying fundamental questions and
formulating them at the right level of abstraction. Unfortunately, the field’s pre-
occupation with innovation comes sometimes at the expense of paying relatively
modest attention to the proper presentation of these fundamental questions and
the corresponding notions and results. One striking example is the way the basics
are being taught.1

For example, in typical Theory of Computation classes, the focus is on “lan-
guage recognition” devices, and fundamental questions like “P versus NP” are
presented in these terms (e.g., do deterministic polynomial-time machines ac-
cept the same languages as non-deterministic polynomial-time machines). In my
opinion, such a formulation diminishes the importance of the problem in the eyes
of non-bright students, and hides the fundamental nature of the question (which
is evident when formulated in terms of “solving problems versus checking the
correctness of solutions”). Similarly, one typically takes the students through the
proof of Cook’s Theorem before communicating to them the striking message
that “universal” problems exist at all (let alone that many natural problems like
SAT are universal). Furthermore, in some cases, this message is not communi-
cated explicitly at all.
� This survey started as a private communication, calling an expert’s attention to

numerous applications of promise problems; specifically, to capturing various no-
tions of approximation and to the study of statistical zero-knowledge. The current
volume provided the immediate incentive to turn these sporadic notes into a more
comprehensive survey.

1 The interested reader is referred to the author’s article “On Teaching the Basics of
Complexity Theory” (this volume), which focuses on the following two examples.
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This article focuses on a less dramatic case of a bad perspective, but still one
that deserves considerable attention: I refer to the notion of promise problems,
and to its presentation in theory of computation classes. Let me start by posing
the following rhetorical question:

How many readers have learned about promise problems in an under-
graduate “theory of computation” course or even in a graduate course
on complexity theory?

Scant few? And yet I contend that almost all readers refer to this notion when
thinking about computational problems, although they may be often unaware
of this fact.

1.1 What Are Promise Problems

My view is that any decision problem is a promise problem, although in some
cases the promise is trivial or tractable (and is thus possible to overlook or
ignore). Formally, a promise problem is a partition of the set of all strings into
three subsets:

1. The set of strings representing yes-instances.
2. The set of strings representing no-instances.
3. The set of disallowed strings (which represent neither yes-instances nor no-

instances).

The algorithm (or process) that is supposed to solve the promise problem is re-
quired to distinguish yes-instances from no-instances, and is allowed arbitrary
behavior on inputs that are neither yes-instances nor no-instances. Intuitively,
this algorithm (or rather its designer) is “promised” that the input is either
a yes-instance or a no-instance, and is only required to distinguish these two
cases. Thus, the union of the first two sets (i.e., the set of all yes-instances and
no-instances) is called the promise.

In contrary to the common perception, in my opinion, promise problems are
no offshoot for abnormal situations, but are rather the norm: Indeed, the stan-
dard and natural presentation of natural decision problems is actually in terms
of promise problems, although the presentation rarely refers explicitly to the ter-
minology of promise problems. Consider a standard entry in [17] (or any similar
compendium) reading something like “given a planar graph, determine whether
or not ...” A more formal statement will refer to strings that represent planar
graphs. Either way, one may wonder what should the decision procedure do when
the input is not a (string representing a) planar graph. One common formalis-
tic answer is that all strings are interpreted as representations of planar graphs
(typically, by using a decoding convention by which every “non-canonical” repre-
sentation is interpreted as a representation of some fixed planar graph). Another
(even more) formalistic “solution” is to discuss the problem of distinguishing
yes-instances from anything else (i.e., effectively viewing strings that violate the
promise as no-instances). Both conventions miss the true nature of the original
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computational problem, which is concerned with distinguishing planar graphs
of one type from planar graphs of another type (i.e., the complementary type).
That is, the conceptually correct perspective is that the aforementioned problem
is a promise problem in which the promise itself is an easily recognizable set.

But, as observed by Even, Selman and Yacobi [13], the promise need not be an
easily recognizable set, and in such a case the issue cannot be pushed under the
carpet. Indeed, consider a computational problem that, analogously to the one
above, reads “given a Hamiltonian graph, determine whether or not ...” In this
case, the two formalistic conventions mentioned above fail: The first one cannot
be implemented, whereas the second one may drastically affect the complexity
of the problem.

Jumping ahead, we mention that the formulation of promise problems is
avoided not without reason. Firstly, it is slightly more cumbersome than the
formulation of ordinary decision problems (having a trivial promise that con-
sists of the set of all strings). More importantly, as observed by Even, Selman
and Yacobi [13], in some cases “well-known” structural relations (which refer to
standard decision problems) need not hold for promise problems (in which the
promise itself is hard to test for membership). For example, the existence of a
promise problem in NP ∩ coNP that is NP-hard (under Cook-reduction) does
not seem to imply that NP = coNP . Still, the benefits of formulating compu-
tational problems in terms of promise problems is often more than worth the
aforementioned costs.

1.2 Some Definitions

In accordance with the above discussion, promise problems are defined as follows.

Definition 1 (promise problems): A promise problem Π is a pair of non-inter-
secting sets, denoted (Πyes, Πno); that is, Πyes, Πno ⊆ {0, 1}∗ and Πyes ∩
Πno = ∅. The set Πyes ∪Πno is called the promise.

An alternative formulation, used in the original paper [13], is that a promise
problem is a pair (P, Q), where P is the promise and Q is a super-set of the
yes-instances. Indeed, in some cases, it is more natural to use the original for-
mulation (e.g., let P be the set of Hamiltonian graphs and Q be the set of
3-colorable graphs), but Definition 1 refers more explicitly to the actual com-
putational problem at hand (i.e., distinguishes inputs in Πyes = P ∩ Q from
inputs in Πno = P \Q).

Standard “language recognition” problems are cast as the special case in
which the promise is the set of all strings (i.e., Πyes ∪Πno = {0, 1}∗). In this
case we say that the promise is trivial. The standard definitions of complexity
classes (i.e., classes of languages) extend naturally to promise problems. In for-
mulating such an extension, rather than thinking on the standard definition as
referring to the set of yes-instances and its complement, one better think of it
as referring to two (non-intersecting) sets: the set of yes-instances and the set
of no-instances. We thus have definitions of the following form.
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Definition 2 (three classes of promise problems):2

P is the class of promise problems that are solvable in (deterministic) polynomial-
time. That is, the promise problem Π = (Πyes, Πno) is in P if there exists
a polynomial-time algorithm A such that:
– For every x ∈ Πyes it holds that A(x) = 1.
– For every x ∈ Πno it holds that A(x) = 0.

NP is the class of promise problems that have polynomially long proofs of mem-
bership that are verifiable in (deterministic) polynomial-time. That is, the
promise problem Π = (Πyes, Πno) is in NP if there exists a polynomially
bounded binary relation R that is recognized by a polynomial-time algorithm
such that:
– For every x ∈ Πyes there exists y such that (x, y) ∈ R.
– For every x ∈ Πno and every y it holds that (x, y) �∈ R.

We say that R ⊆ {0, 1}∗ × {0, 1}∗ is polynomially bounded if there exists a
polynomial p such that for every (x, y) ∈ R it holds that |y| ≤ p(|x|), and R
is recognized by algorithm A if A(x, y) = 1 if and only if (x, y) ∈ R.

BPP is the class of promise problems that are solvable in probabilistic polynomial-
time. That is, the promise problem Π = (Πyes, Πno) is in BPP if there
exists a probabilistic polynomial-time algorithm A such that:
– For every x ∈ Πyes it holds that Pr[A(x) = 1] ≥ 2/3.
– For every x ∈ Πno it holds that Pr[A(x) = 0] ≥ 2/3.

That is, in each case, the conditions used in the standard definition (of language
recognition) are applied to the partition of the promise (i.e., Πyes ∪Πno), and
nothing is required with respect to inputs that violate the promise.

The notion of a reduction among computational problems also extends nat-
urally to promise problems. The next definition extends the most basic type of
reductions (i.e., Karp and Cook reductions).

Definition 3 (reductions among promise problems): The promise problem Π =
(Πyes, Πno) is Karp-reducible to the promise problem Π ′ = (Π ′

yes, Π ′
no) if

there exists a polynomial-time computable function f such that:

– For every x ∈ Πyes it holds that f(x) ∈ Π ′
yes.

– For every x ∈ Πno it holds that f(x) ∈ Π ′
no.

The promise problem Π = (Πyes, Πno) is Cook-reducible to the promise problem
Π ′ = (Π ′

yes, Π ′
no) if there exists a polynomial-time oracle machine M such

that:

– For every x ∈ Πyes it holds that MΠ′
(x) = 1.

– For every x ∈ Πno it holds that MΠ′
(x) = 0.

2 Indeed, the following classes “absorb” the standard language classes. When we wish
to refer to the latter, we will use Roman font.
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where query q to Π ′ is answered by 1 if q ∈ Π ′
yes, by 0 if q ∈ Π ′

no, and
arbitrarily otherwise. Alternatively, we may consider the computation of M when
given access to any total function σ : {0, 1}∗ → {0, 1,⊥} that satisfies σ(x) = 1
if x ∈ Π ′

yes and σ(x) = 0 if x ∈ Π ′
no, where for x �∈ Π ′

yes ∪Π ′
no the value of

σ(x) may be anything (in {0, 1,⊥}). Such a function σ is said to conform with
Π ′. We then require that there exists a polynomial-time oracle machine M such
that for every total function σ : {0, 1}∗ → {0, 1,⊥} that conforms with Π ′ the
following holds:

– For every x ∈ Πyes it holds that Mσ(x) = 1.
– For every x ∈ Πno it holds that Mσ(x) = 0.

Randomized reductions are defined analogously.

We stress that the convention by which queries that do not satisfy the promise
may be answered arbitrarily is consistent with the notion of solving a promise
problem. Recall that solving the latter means providing correct answers to in-
stances that satisfy the promise, whereas nothing is required of the “solver” in
case it is given an instance that violates the promise. In particular, such a poten-
tial “solver” (represented by σ in the alternative formulation) may either provide
wrong answers to instances that violate the promise or provide no answer at all
(as captured by the case σ(x) = ⊥). On the other hand, reductions are supposed
to capture what can be done when given access to a device (represented by σ)
that solves the problem at the target of the reduction. Thus, a reduction to a
promise problem should yield the correct answer regardless of how one answers
queries that violate the promise. We stress that the standard meaning of a re-
duction is preserved: if Π is Cook-reducible to a promise problem in P (or in
BPP) then Π is in P (resp., in BPP).

The foregoing natural convention (regarding oracle calls to a promise prob-
lem) is the source of technical problems. In particular, unlike in the case of
languages, a Cook-reduction to a promise problem in NP ∩ coNP does not
guarantee that the reduced problem is in NP . (For further discussion, see Sec-
tion 5.1. We stress, again, that a Cook-reduction to a promise problem in P does
guarantee that the reduced problem is in P .)

1.3 Some Indispensable Uses of Promise Problems

As argued in Section 1.1, promise problems are actually more natural than lan-
guage recognition problems, and the latter are preferred mainly for sake of tech-
nical convenience (i.e., using less cumbersome formulations). However, in many
cases, promise problems are indispensable for capturing important computa-
tional relations. For example, the notion of one computational problem being a
special case (or a restriction) of another problem is best captured this way: The
promise problem Π = (Πyes, Πno) is a special case of Π ′ = (Π ′

yes, Π ′
no) if

both Πyes ⊆ Π ′
yes and Πno ⊆ Π ′

no.
The above paragraph refers to the importance of promise problems in provid-

ing the nicest presentation of simple ideas, where by a nice presentation we mean
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one in which conceptual issues are explicitly represented (rather than hidden by
technical conventions). We note that when simple ideas are concerned one may
survive ugly presentations, but this becomes more difficult when the issues at
hand are less simple. Furthermore, in some cases the notion of a promise problem
is essential to the main results themselves. Most of this article will be devoted
to surveying some of these cases, and a brief overview of some of them follows.

1. The study of the complexity of problems with unique solution must be
formally cast in terms of promise problems. For example, unique-SAT is
the promise problem having as yes-instances Boolean formulas that have
a unique satisfying assignment and having as no-instances unsatisfiable
Boolean formulas. (See Section 2 for further discussion.)

2. The study of the hardness of approximation problems may be formally cast
in terms of promise problems. This is especially appealing when one wants to
establish the hardness of obtaining an approximation of the optimal value.
Specifically, one often refers to “gap problems” which are promise problems
having as yes-instances objects that have a relatively high (resp., low) op-
timum value and no-instances that are objects with relatively low (resp.,
high) optimum value. (See Section 3 for further discussion.)

3. Promise problem allow to introduce complete problems for classes that are
not known to have complete languages. A notable example is the class BPP,
and another important one is SZK (i.e., the class of problems having statis-
tical zero-knowledge proof systems). Indeed, promise problems have played a
key role in the study of the latter class. (See Section 4 for further discussion.)

4. Promise problem were used to indicate separations between certain com-
putational devices with certain resource bounds. Examples appeared in the
study of circuit complexity, derandomization, PCPs, and zero-knowledge.
(See Section 5.2 for further discussion.)

Finally, we wish to call attention also to the expositionary benefits of promise
problems, further discussed in Sections 6 and 7. In particular, Section 6.1 dis-
cusses their application for proving various complexity lower-bounds, while in
Section 6.2 they are used to distill the essence of a known result (i.e., BPP ⊆ PH).
In Section 7 we present a suggestion for casting various “modified” complexity
classes (i.e., “computations that take advice” and “infinitely often” classes) in
terms of the classes themselves where the latter are understood as classes of
promise problems.

1.4 Relation to Shimon Even (A Personal Comment)

As hinted above, promise problems were explicitly introduced by Even, Selman
and Yacobi [13], and their study was initiated in [13]. In my opinion, the powerful
combination of the natural notion that promise problems capture, their simple
definition, and their wide applicability is one of Shimon Even’s trade-marks. I
vividly recall him telling me in one of our first meetings:
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The very simple facts and the basic approaches are the ones that have
most impact; they are the ones that get disseminated across the disci-
plines and even influence other disciplines. A work’s most influential
contribution may be introducing a good notation.

Needless to say, science progresses by coping with difficult problems. Most sci-
entific works are too complicated to have a far-reaching impact by themselves,
but at times they lead to paradigm shifts that do have far-reaching impact, as
argued by Kuhn [41]. These paradigm shifts, which are the most important con-
tributions of science, are typically simple from a technical point of view. Thus,
both Even and Kuhn viewed simplicity (at the frontier of science) as positively
correlated with impact and importance.

In view of the above, I believe that in surveying the notion of promise prob-
lems and its wide applicability, I am surveying a central theme in Shimon’s
research, a theme that is prominently present also in other works of his.

1.5 A Comment About the Organization

In addition to the main sections mentioned above, the survey contains three
appendices that provide further details regarding some of the results mention in
the main text. These appendices may be ignored with no loss to the conceptual
message of this survey. Among the three appendices, Appendices B and C are
most relevant to the main message, because they offer a closer look at the role of
promise problems in the surveyed results. In contrast, Appendix A demonstrates
that reductions to promise problems may cleverly utilize queries that violate the
promise (an issue further addressed in Section 5.1).

2 Unique Solutions and Approximate Counting of
Solutions

In this section, we review the use of promise problems in stating central re-
sults regarding the complexity of finding unique solutions and the complexity
of approximating the number of solutions to NP-problems. We call the reader’s
attention to the indispensable role of promise problems in the definition of “prob-
lems with unique solutions” and their role in formulating a decision version of the
problem of “approximate counting”. The latter theme will reappear in Section 3.

2.1 The Complexity of Finding Unique Solutions

The widely believed intractability of SAT cannot be due to instances that have a
“noticeable fraction” of satisfying assignments. For example, given an n-variable
formula that has at least 2n/n satisfying assignments, it is easy to find a satis-
fying assignment (by trying O(n) assignments at random). Going to the other
extreme, one may ask whether or not it is easy to find satisfying assignments to
SAT instances that have very few satisfying assignments (e.g., a unique satisfying
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assignment). As shown by Valiant and Vazirani [58], the answer is negative: the
ability to find satisfying assignments to such instances yields the ability to find
satisfying assignments to arbitrary instances. Actually, they showed that distin-
guishing uniquely satisfiable formulae from unsatisfied ones is not easier than
distinguishing satisfiable formulae from unsatisfied ones.

In order to formulate the above discussion, we refer to the notion of promise
problems. Specifically, we refer to the promise problem of distinguishing in-
stances with a unique solution from instances with no solution. For example,
unique-SAT (or uSAT) is the promise problem with yes-instances being formulae
having a unique satisfying assignment and no-instances being formulae having
no satisfying assignment.

Theorem 4 [58]: SAT is randomly reducible to uSAT. That is, there exists a
randomized Cook-reduction of SAT to uSAT.

A proof sketch is presented in Appendix A. The same result holds for any known
NP-complete problem; in some cases this can be proven directly and in other
cases by using suitable parsimonious reductions.3

2.2 The Complexity of Approximately Counting the Number of
Solutions

A natural computational problem associated with an NP-relation R is to deter-
mine the number of solutions for a given instance; that is, given x, determine the
cardinality of R(x) def= {y : (x, y) ∈ R}. Certainly, the aforementioned counting
problem associated with R is not easier than the problem of deciding member-
ship in LR = {x : ∃y s.t. (x, y) ∈ R}, which can be cast as determining, for a
given x, whether |R(x)| is positive or zero.

We focus on the problem of approximating |R(x)|, when given x, up to a
factor of f(|x|), for some function f : N → {r ∈ R : r > 1} (which is bounded
away from 1). Formulating this problem in terms of decision problems has several
advantages (see analogous discussion at the end of Section 3.1), and can be done
via promise problems. Specifically, the problem of approximating |R(x)| can be
cast as a promise problem, denoted #Rf , such that the yes-instances are pairs
(x, N) satisfying |R(x)| ≥ N whereas the no-instances are pairs (x, N) satisfying
|R(x)| < N/f(|x|). Indeed, for every f : N→ R such that f(n) > 1+(1/poly(n)),
approximating |R(x)| up to a factor of f(|x|) is Cook-reducible to deciding #Rf .4

3 A parsimonious reduction (between NP-sets) is a Karp-reduction that preserves the
number of solutions (i.e., NP-witnesses). That is, for NP-sets LR = {x : (∃y) (x, y)∈
R} and LR′ = {x : (∃y) (x, y)∈R′}, the mapping f is a parsimonious reduction from

LR to LR′ if for every x it holds that |R′(f(x))| = |R(x)|, where R(x)
def
= {y : (x, y)∈

R} and R′(x′)
def
= {y′ : (x′, y′)∈R′}.

4 On input x, the Cook-reduction issues the queries (x, f(|x|)i), for i = 0, 1, ..., 	,
where 	 = poly(|x|)/ log2(f(|x|)). The oracle machine returns 0 if the first query
was answered by 0, and f(|x|)i if i is the largest integer such that (x, f(|x|)i) was
answered by 1.
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Clearly, for every f : N → {r ∈ R : r ≥ 1}, deciding #Rf is at least as hard
as deciding LR. Interestingly, for any f that is bounded away from 1 and for any
known NP-relation R, deciding #Rf is not harder than deciding LR. We state
this fact for the witness relation of SAT, denoted RSAT.

Theorem 5 [53]: For every f : N → R such that f(n) > 1 + (1/poly(n)), the
counting problem #Rf

SAT is randomly Karp-reducible to SAT.

A proof sketch is presented in Appendix A. The same result holds for any known
NP-complete problem; in some cases this can be proven directly and in others
by using suitable parsimonious reductions.

3 Gap Problems – Representing Notions of
Approximation

Gap problems are a special type of promise problems in which instances are
partitioned according to some metric leaving a “gap” between yes-instances
and no-instances. We consider two such metrics: in the first metric instances
are positioned according to the value of the best corresponding “solution” (with
respect to some predetermined objective function), whereas in the second metric
instances are positioned according to their distance from the set of objects that
satisfy some predetermined property.

3.1 Approximating the Value of an Optimal Solution

When constructing efficient approximation algorithms, one typically presents al-
gorithms that given an instance find an almost-optimal solution, with respect to
some desired objective function, rather than merely the value of such a solution.
After all, in many settings, one seeks a solution rather than merely its value, and
typically the value is easy to determine from the solution itself, thus making the
positive result stronger. However, when proving negative results (i.e., hardness
of approximation results), it is natural to consider the possibly easier task of
approximating the value of an optimal solution (rather than finding the solution
itself). This makes the negative result stronger, and typically makes the proof
more clear.

Promise problems are the natural vehicle for casting computational problems
that refer to approximating the value of an optimal solution. Specifically, one
often refers to “gap problems” that are promise problem having as yes-instances
objects that have a relatively high (resp., low) optimum value and no-instances
that are objects with relatively low (resp., high) optimum value. Indeed, this has
been the standard practice since [7].

Let us demonstrate this approach by considering the known results regarding
several famous approximation problems. For example, the complexity of Max-
Clique is captured by the gap problem gapCliqueb,s, where b and s are functions
of the number of vertices in the instance graph. The problem gapCliqueb,s is



On Promise Problems: A Survey 263

a promise problem consisting of yes-instances that are N -vertex graphs con-
taining a clique of size b(N) and no-instances that are N -vertex graphs con-
taining no clique of size s(N). Hastad’s celebrated result asserts that, for every
ε ∈ (0, 1/2), the promise problem gapCliquebε,sε

is NP-hard (under probabilistic
Karp-reductions) [35], where bε(N) = N1−ε and sε(N) = N ε.

Another famous approximation problem is Max3SAT. For any constant s ∈
(0, 1), consider the gap problem gap3SATs that consists of yes-instances that are
satisfiable 3CNF formulae and no-instances that are 3CNF formulae in which
every truth assignment satisfies less than an s fraction of the clauses.5 Note that
the gap problem gap3SAT7/8 is trivial, because every 3CNF formula has a truth
assignment that satisfies at least a 7/8 fraction of its clauses. On the other hand,
Hastad showed that, for every ε ∈ (0, 1/8), the promise problem gap3SAT(7/8)+ε

is NP-hard (under Karp-reductions) [36].

On the benefits of the framework of gap problems. The reader may wonder how
essential is the use of gap problems in stating results of the aforementioned
type. Indeed, one often states the Max-Clique result by saying that, for every
ε > 0, it is NP-hard to approximate the size of the maximum-clique in an N -
vertex graph to within a factor of N1−ε. Firstly, we comment that the latter
is merely a corollary of Hastad’s result [35], which is actually a (randomized)
Karp-reduction of NP to gapCliqueN1−ε,Nε . The same holds with respect to
all hardness of approximation results that are obtained through PCPs: They are
obtained by Karp-reductions of PCPs with certain parameters to gap problems,
where the former PCPs are shown to exist for NP . In our opinion, it is nicer to
present these results as hardness of certain gap problems (which reflects what
is actually proved), and their meaning is at least as clear when stated in this
way. More importantly, in some cases information is lost when using the “ap-
proximation factor” formulation. Consider for example the assertion that, for
every ε ∈ (0, 1/8), it is NP-hard to approximate Max3SAT to within a factor
of (7/8) + ε. The latter assertion does not rule out the possibility that, given
a satisfiable 3CNF formula, one can find an assignment that satisfies 90% of
the clauses. This possibility is ruled out by the fact that gap3SAT9/10 is NP-
hard, and we comment that proving the latter result seems to require more work
than proving the former [36].6 Lastly, the formulation of promise problems seems
essential to “reversing the PCP to approximation” connection [7, Sec. 8] (i.e.,
showing that certain NP-hardness results regarding approximation yield PCP
systems with certain parameters).

5 By a 3CNF formula we mean a conjunction of clauses, each consisting of exactly
three different literals.

6 Specifically, proving that gap3SAT(7/8)+ε is NP-hard seems to require using a PCP
with “perfect completeness” (as constructed in [36, Thm. 3.4]), whereas Hastad’s
initial construction [36, Thm. 2.3] does not have perfect completeness (and estab-
lishes the NP-hardness of distinguishing 3CNF formulae having a truth assignment
that satisfies at least 1−ε fraction of the clauses from 3CNF formulae in which every
truth assignment satisfies less than a (7/8)+ε fraction of the clauses [36, Thm. 3.1]).
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3.2 Property Testing – The Distance Between yes and no-Instances

In some sense, all research regarding property testing (cf. [50, 23]) can be cast
in terms of promise problems, although this is typically not done – for reasons
discussed below.

Property testing is a relaxation of decision problems, where the (typically
sub-linear time) algorithm is required to accept (with high probability) any
instance having the property (i.e., any instance in some predetermined set) and
reject (with high probability) any instance that is “far from having the property”
(i.e., being at large distance from any instance in the set). The algorithm, called
a tester, may run in sub-linear time because it is given oracle access to the tested
object, and thus need not read it entirely. We comment that, in all interesting
cases, this algorithm needs to be probabilistic.

Typically, the distance parameter is given as input to the tester (rather than
being fixed as in Section 3.1)7, which makes the positive results stronger and
more appealing (especially in light of a separation recently shown in [5]). In con-
trast, negative results typically refer to a fixed value of the distance parameter.
Thus, for any distance function (e.g., Hamming distance between bit strings)
and any property P, two natural types of promise problems emerge:

1. Testing w.r.t variable distance: Here instances are pairs (x, δ), where x is a
description of an object and δ is a distance parameter. The yes-instances
are pairs (x, δ) such that x has property P, whereas (x, δ) is a no-instance if
x is δ-far from any x′ that has property P.

2. Testing w.r.t a fixed distance: Here we fix the distance parameter δ, and so
the instances are merely descriptions of objects, and the partition to yes
and no instances is as above.

For example, for some fixed integer d, consider the following promise problem, de-
noted BPGd, regarding bipartiteness of bounded-degree graphs. The yes-instance
are pairs (G, δ) such that G is a bipartite graph of maximum degree d, whereas
(G, δ) is a no-instance if G is an N -vertex graph of maximum degree d such that
more than δ · dN/2 edges must be omitted from G in order to obtain a bipartite
graph. Similarly, for fixed integer d and δ > 0, the promise problem BPGd,δ has
yes-instances that are bipartite graphs of maximum degree d and no-instances
that are N -vertex graphs of maximum degree d such that more than δ · dN/2
edges must be omitted from the graph in order to obtain a bipartite graph.
In [26] it was shown that any tester for BPG3, 0.01 must make Ω(

√
N) queries (to

the description of the graph, given as an oracle). In contrast, for every d and δ,
the tester presented in [27] decides BPGd,δ in time Õ(

√
N/poly(δ)). In fact, this

algorithm decides BPGd in time Õ(
√

N/poly(δ)), where N and δ are explicitly
given parameters.

7 In fact, an analogous treatment applies to approximation problems as briefly sur-
veyed in Section 3.1. Indeed a formulation of approximation problems in which the
approximation factor is part of the input corresponds to the notion of an approxi-
mation scheme (which is not surveyed here).
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The formulation typically used in the literature. Indeed, all research on prop-
erty testing refers to the two aforementioned types of promise problems, where
typically positive results refer to the first type and negative results refer to the
second type. However, most works do not provide a strictly formal statement
of their results (see further discussion below), because the formulation is rather
cumbersome and straightforward. Furthermore, in light of the greater focus on
positive results (and in accordance with the traditions of algorithmic research),
such a formal statement is believed to be unnecessary.8 Let us consider what is
required for a formal statement of property testing results. The starting point is
a specification of a property and a distance function, the combination of which
yields a promise problem (of the first type), although the latter fact is never
stated. The first step is to postulate that the potential “solvers” (i.e., property
testers) are probabilistic oracle machines that are given oracle access to the
“primary” input (i.e., the object in the aforementioned problem types). Indeed,
this step need to be taken and is taken in all works in the area. Secondly, for a
formal asymptotic complexity statement, one needs to specify the “secondary”
(explicit) inputs, which consist of various problem-dependent parameters (e.g.,
N in the above examples) and the distance parameter δ (in case of BPGd and
any other problem of the first aforementioned type). This step is rarely done
explicitly in the literature. Finally, one should state the complexity of the tester
in terms of these explicit inputs.

4 Promise Problems Provide Complete Problems

Most of this section is devote to the key role that promise problems have played
in the study of Statistical Zero-Knowledge proof systems. However, we start by
reviewing the situation in the seemingly lower complexity class BPP.

4.1 A Complete Problem for BPP

In terms of language recognition, finding a complete problem for BPP is a long-
standing challenge. The same hold for establishing hierarchy theorems for BP-
time (cf. [6, 16]). However, in terms of promise problems, both challenges are
rather easy (as is the case for analogous questions regarding P). Indeed, the fol-
lowing promise problem is complete (under deterministic Karp-reductions) for
the (promise problem) class BPP: The yes-instances are Boolean circuits that
evaluate to 1 on at least a 2/3 fraction of their inputs, whereas the no-instances
are Boolean circuits that evaluate to 0 on at least a 2/3 fraction of their inputs.
(Thus, the promise “rules out” circuits that evaluate to 1 on a p fraction of their

8 Needless to say, a higher level of rigor is typically required in negative statements.
Indeed, property testing is positioned between algorithmic research and complexity
theory, and seems to be more influenced by the mind-frame of algorithmic research.
(We comment that the positioning of a discipline is determined both by its contents
and by sociology-of-science factors.)
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input, where p ∈ (1/3, 2/3).) A reduction from Π ∈ BPP to the aforementioned
promise problem merely maps x to Cx, where Cx is a circuit that on input r
emulates the computation of M on input x and random-tape r, where M is a
probabilistic polynomial-time machine deciding Π .

Needless to say, the above also holds with respect to other complexity classes
that are aimed to capture efficient randomized computation (e.g.,RP andZPP).

4.2 Complete Problems for Statistical Zero-Knowledge

Statistical zero-knowledge (SZK) is a subclass of standard zero-knowledge (ZK,
aka computational zero-knowledge), where the simulation requirement is more
strict (i.e., requiring simulation that is statistically close to the true interaction
rather than only computationally indistinguishable from it). For background
see either [19, Chap. 4] or [20]. Typically (as is the case in all results reviewed
below), the study of SZK is carried out without referring to any intractability
assumptions (in contrast to the study of standard ZK, which is usually based on
one-way functions; cf. [25] but see [56] for a recent exception).

Promise problem have played a key role in the comprehensive study of sta-
tistical zero-knowledge. (This study was carried out in the late 1990’s and is
nicely summarized in Vadhan’s PhD Thesis [55].) This study of statistical zero-
knowledge (SZK) was conducted by presenting and extensively studying two
complete (promise) problems for the (promise problem) class SZK. Specifically,
these promise problems facilitate the establishment of various important prop-
erties of the class SZK, because the definition of these promise problems is very
simple in comparison to the actual definition of the class SZK. Furthermore,
the fact that the class has natural complete problems is of independent interest.

The two aforementioned complete problems are gapSD and gapENT, intro-
duced and shown complete for SZK in [51] and [31], respectively. Both problems
refer to pairs of distributions, where each distribution is represented by a “sam-
pling circuit” (i.e., a circuit C represents the distribution seen at its output
wires when feeding the input wires with uniformly distributed values). The yes-
instances of gapSD are distributions that are at (statistical) distance at most
1/3 apart, and the no-instances are distributions that are at distance at least
2/3 apart. The yes-instances of gapENT are pairs of distributions in which the
first distribution has entropy greater by one unit than the entropy of the second
distribution, and in the no-instances the first distribution has entropy that is
smaller by one unit from the entropy of the second distribution.

To demonstrate the power of the complete problem approach to the study of
SZK, note that the fact that gapENT is complete (under Karp-reductions) for
SZK immediately implies that SZK is closed under complementation, which is
a highly non-trivial result. For a more detailed presentation, which highlights the
role of promise problems in the study of SZK, the interested reader is referred
to Appendix B.
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5 Promise Problems as Indicators of Complexity: Pros
and Cons

Given the common desire to appeal to traditional notions, one typically tries
to avoid promise problems and formulate the assertions in terms of language
recognition problems. As we have seen in previous sections, in some cases this
desire can not be satisfied due to inherent (or seemingly inherent) reasons. In
other cases, one turns to promise problems after failing to prove an analogous
result for language recognition problems, although there seems to be no inherent
reason to justify the failure (see examples in Section 5.2). The question, however,
is whether we lose something important when working with promise problems
(rather than with language recognition problems). Since we have already seen
some of the benefit of promise problems, we start by considering the dark side
(i.e., the latter question).

5.1 Con: The Failure of Some Structural Consequences

The problem with results regarding promise problems is that sometimes they
do not have the same structural consequences as analogous results regarding
language recognition. The most notorious example is that the existence of an
NP-hard (under Cook reductions) promise problem in NP ∩ coNP does not
seem to have any structural consequences, whereas an analogous result for a
language recognition problem implies that NP = coNP (see Theorem 7 be-
low). This fact was observed by Even, Selman and Yacobi [13], who presented
the following NP-complete problem, denoted xSAT: The yes-instances are pairs
(φ1, φ2) such that φ1 ∈ SAT and φ2 /∈ SAT, whereas the no-instances are pairs
(φ1, φ2) such that φ1 /∈ SAT and φ2 ∈ SAT.

Theorem 6 [13, Thm. 4]: NP is Cook-reducible to xSAT, which in turn is in
NP ∩ coNP.

Proof sketch: To see that xSAT is in NP , consider the witness relation R1 =
{((φ1, φ2), τ) : (φ1, τ) ∈ RSAT}, whereas xSAT is in coNP by virtue of the witness
relation R2 = {((φ1, φ2), τ) : (φ2, τ) ∈ RSAT}. A Cook-reduction of SAT to xSAT
may consist of the following oracle machine that, on input a formula φ, tries
to find a satisfying assignment to φ, and accepts if and only if it succeeds. On
input φ and oracle access to xSAT, the machine proceeds as follows, starting with
φλ

def= φ and τ = λ (the empty prefix of a potential satisfying assignment), and
continuing as long as φτ has free variables.

1. Let φτσ be the formula obtained from φτ by setting the |τ |+ 1st variable to
σ.

2. Invoke the oracle on query (φτ1, φτ0). If the answer is 1 then let τ ← τ1,
otherwise τ ← τ0.

Note that if φτ is satisfiable and the query (φτ1, φτ0) is answered with σ then φτσ

is satisfiable, because the claim holds trivially if both φτ1 and φτ0 are satisfiable,
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and the oracle answer is definitely correct if exactly one of these formulae is
satisfiable (since the promise is satisfied in this case). Thus, the above process
finds a satisfying assignment to φ if and only if one exists.

What happened? We stress that a Cook-reduction to a promise problem does
maintain the standard meaning of the concept; that is, if the target (promise)
problem is tractable (i.e., is in P or BPP) then so is the reduced problem. The
issue is that if the target problem is in NP ∩ coNP then (unlike in the case
of trivial promises (i.e., language recognition problems)) it does not necessarily
follow that the reduced problem is in NP ∩ coNP . This fact will be clarified by
looking at the proof of Theorem 7, which refers to “smart reductions” to promise
problems.

Note that the reduction used in the proof of Theorem 6 may make queries
that violate the promise. Still, we have shown that the reduction remains valid
regardless of the answers given to these queries (i.e., to queries that violate
the promise). However, these queries fail the aforementioned structural conse-
quences. One may eliminate the problems arising from such queries by requiring
that the reduction does not make them (i.e., does not make queries that violate
the promise). Such a reduction is called smart [34] (probably because it is smart
to avoid making queries that violate the promise, although one may argue that
it is even more clever to be able to use answers to such queries). Note that any
Karp-reduction is smart. Smart reductions maintain the structural consequences
established in the case of language recognition problems.

Theorem 7 [34, Thm. 2]: Suppose that the promise problem Π ′ is reducible to
the promise problem Π = (Πyes, Πno) via a smart reduction, and that Π ∈
NP ∩ coNP. Then Π ′ ∈ NP ∩ coNP.

Proof sketch: We prove that Π ′ ∈ NP and the proof that Π ′ ∈ coNP is simi-
lar. Let M be the polynomial-time oracle machine guaranteed by the hypothesis.
The transcript of the execution of MΠ(x) contains the sequence of queries and
answers to the oracle as well as the final decision of M , but the transcript itself
(as a string) does not guarantee the correctness of the answers and thus the
authenticity of the execution. The key observation is that the said answers can
be augmented by corresponding NP-witnesses that guarantee the correctness of
the answers, and thus the authenticity of the execution.

Specifically, on any input x (which satisfies the promise of Π ′), machine M
makes queries that are either in Πyes or in Πno, and in each of these cases there
is an NP-witness guaranteeing the correctness of the answer (because Π ∈ NP
and Π ∈ coNP). Thus, an NP-witness for x may consist of the sequence of
(answers and) corresponding NP-witnesses, each proving either that the query
is in Πyes or that the query is in Πno, thus certifying the correctness of the
answers. Indeed, these NP-witnesses are all correct, because it is guaranteed that
each query satisfies the promise (since the reduction is smart). Note that this
sequence of NP-witnesses uniquely determines the execution of M , on input x



On Promise Problems: A Survey 269

and oracle access to Π , and thus vouches for the correctness of the outcome of
this computation.

In contrast to the proof of Theorem 7, note that a query that violates the
promise does not necessarily have an NP-witness (e.g., asserting that it violates
the promise, or anything else). Thus, we cannot insist on having NP-witnesses
for all queries, and once we allow “uncertified answers” (i.e., answers not backed
by NP-witnesses) all bets are off.

Another look. Indeed, smart reduction salvage the structural consequences of
reductions to language recognition problems, but this comes at the cost of re-
stricting the consequences to smart reductions. That is, for Π ∈ NP ∩ coNP ,
rather than saying “if Π is NP-hard thenNP = coNP” one may only say “if Π is
NP-hard under smart reductions then NP = coNP”. However, there is another
way out, provided we know more about the promise problem Π = (Πyes, Πno).
For example, suppose that in addition to knowing that Π ∈ NP ∩ coNP, we
know that the set Πno is in coNP (i.e., ({0, 1}∗ \ Πno, Πno) ∈ NP). Then,
we can ask for NP-witnesses asserting either membership in {0, 1}∗ \ Πno or
membership in Πno.

Theorem 8 (implicit in [11], see [21]):9 Suppose that the promise problem Π ′ is
reducible to the promise problem Π = (Πyes, Πno) ∈ coNP and that ({0, 1}∗ \
Πno, Πno) ∈ NP. Then Π ′ ∈ NP ∩ coNP.

Note that ({0, 1}∗ \Πno, Πno) ∈ NP implies that Π = (Πyes, Πno) ∈ NP ,
and thus the latter was not stated as a hypothesis in Theorem 8. To demon-
strate the applicability of Theorem 8, we mention that it was recently shown
(cf. [2] improving upon [22]) that certain promise problems (i.e., gap problems)
regarding lattices are in NP ∩ coNP . It is actually obvious that the set of the
corresponding no-instances is in coNP . Applying Theorem 8, it follows that
these (gap) problems are unlikely to be NP-hard (rather than restricting the
claim to smart reductions).

Proof sketch: Following the proof of Theorem 7, an NP-witness for x may con-
sist of the sequence of (answers and) corresponding NP-witnesses, each “proving”
either that the query is in {0, 1}∗ \Πno or that the query is in Πno. Note that
these witnesses exist for every query, but indeed, in case the query violates the

9 This theorem is implicit in [11], which observes an oversight of [22]. In [22] certain gap
problems regarding lattices were shown to be in NP∩coAM, and it was inferred that
these (gap) problems are unlikely to be NP-hard under smart reductions (because
such a reduction will imply that AM = coAM, which in turn will cause collapse
of the Polynomial-time Hierarchy). In [11] it was observed that these problems are
unlikely to be NP-hard (under any Cook-reduction). Specifically, they showed that,
for these gap problems, the argument of Theorem 7 can be extended using NP-
witnesses that exist for the corresponding set {0, 1}∗ \ Πno. This argument was
abstracted in [21], where a theorem analogous to Theorem 8 is presented (referring
to AM rather than to NP).
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promise, witnesses may exist to both claims. Still, the witnesses do guarantee
the correctness of all answers to queries that satisfy the promise (although they
do not indicate which queries satisfy the promise). However, guaranteeing the
correctness of all queries that satisfy the promise suffices for guaranteeing the
correctness of the outcome of the computation. Thus, although the sequence
of witnesses does not determine (uniquely) the execution of M on input x and
oracle access to Π , it does vouch for the correctness of the outcome of the com-
putation.

Generalization of Theorem 8. The following elegant generalization of Theorem 8
was suggested to us by Salil Vadhan. It considers two sets, Sy and Sn, such that
Sy (resp., Sn) contains all yes-instances (resp., no-instances) of Π but none of
the no-instances (resp., yes-instances).

Theorem 9 (Vadhan [priv. comm.]): Let Π = (Πyes, Πno) be a promise prob-
lem, and Sy and Sn be sets such that Sy ∪ Sn = {0, 1}∗, Πyes ⊆ Sy ⊆
{0, 1}∗ \Πno and Πno ⊆ Sn ⊆ {0, 1}∗ \Πyes. Suppose that the promise prob-
lems (Sy, Πno) and (Sn, Πyes) are both in NP. Then, every promise problem
that is Cook-reducible to Π, is in NP ∩ coNP.

We stress that Sy and Sn cover the set of all strings but are not necessarily
a partition of it (i.e., Sy ∪ Sn = {0, 1}∗ but Sy ∩ Sn may be non-empty).
Theorem 8 is obtained as a special case by considering Sy = {0, 1}∗ \Πno and
Sn = Πno. The proof of Theorem 9 generalizes the proof of Theorem 8: the
answer to each query is augmented by a corresponding NP-witness (asserting
either membership in Sy or membership in Sn). Again, “witnesses” exist for
each query, and they are guaranteed to be correct in case the query satisfies the
promise.

5.2 Pro: Shedding Light on Questions Concerning Complexity
Classes

Recall that working with promise problems (rather than with language recogni-
tion problems) may result in the loss of some structural consequence. We stress,
however, that the most fundamental feature of general reductions is maintained:
if a problem is reducible to a tractable problem, then the former is also tractable.
Here we address the issue of tractability, and discuss promise problems that are
not about “gaps” or “unique solutions” nor complete for any natural class, at
least not obviously. Still, they are important for the study of some natural com-
plexity classes. Specifically, they indicate (or provide evidence to) separations
between complexity classes that represent the computing power of certain com-
putational devices with certain resource bounds.

Separating monotone and non-monotone circuit complexities. Several researchers
have observed that Razborov’s celebrated super-polynomial lower-bound on the
monotone circuit complexity of Max-Clique [47, Thm. 2] actually establishes a
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lower-bound on a promise problem that is in P .10 Thus, this result actually estab-
lishes a super-polynomial separation between the monotone and non-monotone
circuit complexities (of a monotone problem). Actually, a less-known result in
the same paper [47, Thm. 3] asserted a similar lower-bound for Perfect Matching
(cf. [48]), and so the said separation could have been established by a language
recognition problem (but not by the more famous result of [47]). Interestingly,
the clique lower-bound was improved to exponential in [4], but a similar result
was not known for Perfect Matching. Thus, at that time, an exponential separa-
tion of the monotone and non-monotone circuit complexities required referring
to a promise problem (i.e., the one mentioned in Footnote 10). Subsequently,
an exponential separation for languages was shown by providing an exponen-
tial lower-bound on the monotone complexity of some other polynomial-time
computable (monotone) function [54].

The derandomization of BPP versus the derandomization of MA. One obvious
fact, rarely noted, is that results about derandomization of BPP imply results
on the derandomization of MA, where MA is the class of problems having
a “randomized verification procedure” (i.e., the analogue of NP in which the
validity of witnesses is determined by a probabilistic polynomial-time algorithm
rather than by a deterministic polynomial-time algorithm). This observation
holds provided that the former derandomization results relate to BPP as a class
of promise problems (as in Definition 2) rather than to the corresponding class of
language recognition problems. We note that all known derandomization results
have this property. In any case, in terms of promise problem classes, we have
that BPP ⊆ DT IME(t) implies MA ⊆ NT IME(poly(t)), provided that the
function t is “nice”. Specifically, BPP = P implies MA = NP . For details
see [32, Sec. 5.4] (or Appendix C).

Disjoint NP-pairs and proof complexity. Disjoint NP-pairs are promise problems
such that both the set of yes-instances and the set of no-instances are NP-
sets. Such pairs are related to propositional proof systems in the sense that
each such proof system gives rise to a (“canonical”) disjoint NP-pair, and every
disjoint NP-pair is computationally equivalent to a canonical pair associated with
some propositional proof system. The existence of “optimal” propositional proof
systems is thus equivalent to the existence of complete NP-pairs.11 Hence, the
study of a natural question regarding propositional proof systems is equivalent

10 For k ≈ N2/3, this promise problem has yes-instances that are N-vertex graphs
having a clique of size k, and no-instances that are complete (k − 1)-partite N-
vertex graphs. This problem can be easily solved by a greedy attempt to construct
a (k − 1)-partition of the input graph. Needless to say, this greedy approach takes
advantage of the promise.

11 See [18] for definitions of the “canonical pair” associated with a propositional proof
system, the “optimality” of propositional proof systems, and “complete NP-pairs”
(which are merely promise problems that are complete for the class of Disjoint NP-
pairs).
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to the study of the reducibility properties of a class of promise problem. For
details see [18].

Relations among PCP classes. Some of the appealing transformations among
PCP classes are only known when these classes are defined in terms of promise
problems (see, e.g., [7, Sec. 11] and [30, Sec. 4]). For example, the intuitive
meaning of [7, Prop. 11.2] is that the randomness in a PCP can be reduced
to be logarithmic in the length of the proof oracle, but the actual result is a
randomized Karp reduction of any problem having a PCP to a promise problem
having a PCP with the same query (and/or free-bit) complexity and proof-length
but with logarithmic randomness. Similarly, the main PCP result of [30, Sec. 4]
is a almost-linear length PCP not for SAT but rather for a promise problem
to which SAT can be randomly Karp-reduced (by an almost length preserving
reduction). We mention that the latter random reduction was eliminated by the
subsequent work of [9].

Supporting the conjectured non-triviality of statistical zero-knowledge. Seeking
to provide further evidence to the conjectured non-triviality of statistical zero-
knowledge (i.e., the conjecture that SZK extends beyond BPP), researchers
tried to show statistical zero-knowledge proof systems for “hard” (language
recognition) problems. At the time (i.e., late 1980’s), it was known that Quadratic
Residuosity and Graph Isomorphism are in SZK (cf., [33] and [25], respectively),
but the belief that these problems are hard seems weaker than the belief that
factoring integers or the Discrete Logarithm Problem are hard. So the goal was
to present a statistical zero-knowledge proof system for a language recognition
problem that is computationally equivalent to any of these search problems. This
was almost done in [24], who showed an analogous result for a promise prob-
lem. Specifically, they presented a statistical zero-knowledge proof for a promise
problem that is computationally equivalent to the Discrete Logarithm Problem.
Needless to say, the “gap” between yes and no instances in this promise prob-
lem plays a key role in showing that this problem is in SZK. Thus, based on
this promise problem, the non-triviality of SZK is supported by the conjectured
intractability of the Discrete Logarithm Problem.

Following a great tradition. The last example follows a central tradition in
the closely related field of Cryptography, where one often considers promise
problems. These problems are often search problems that refer to inputs of
a special form (although computationally equivalent decision (promise) prob-
lems are sometimes stated too). Typical examples include “cryptanalyzing” a
sequence of ciphertexts that are “promised” to have been produced using the
same encryption-key, and factoring an integer that in the product of two primes
of approximately the same size. Indeed, these examples were among the con-
crete motivations to the definition of promise problems introduced by Even,
Selman and Yacobi [13], following prior work of Even and Yacobi [14]. The lat-
ter paper (combined with [43]) has also demonstrated that NP-hardness (i.e.,
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worst-case hardness) of the “cryptanalysis” task is a poor evidence for crypto-
graphic security. Indeed, subsequent works in cryptography typically relate to
the average-case complexity of “cryptanalysis”, and the “promise problem na-
ture” of the task is incorporated (implicitly) in the formulation by assigning zero
(probability) weight to instances that violate the promise.

And something completely different. Finally, we mention the role of promise
problems in the study of Quantum Computation and Communication. I am re-
ferring to two elegant mathematical models of controversial relevance to the
theory of computation, and admit that I do not understand the real meaning
of these models. Still, I am told that the very definition of “Quantum NP-
completeness” refers to promise problems, and that the known complete prob-
lems are all promise problems (see, e.g., [39, 40] where the names QBNP and
QMA are used). As for Quantum Communication, the only super-polynomial
separations known between the power of classical and quantum communication
complexities are for promise problems (see, e.g., Raz’s paper [46]).

6 Promise Problems as Facilitators of Nicer Presentation

In previous sections, we have discussed the role of promise problems in providing
a framework for several natural studies and in enabling several appealing results
(e.g., complete problems for SZK). In the current section we focus on their role
as facilitators of nicer presentation of various results. We believe than an explicit
use of promise problems in such cases clarifies the argument as well as reveals
its real essence. We start with a rather generic discussion, and later turn to one
concrete example (i.e., the well-known result BPP ⊆ PH).

6.1 Presenting Lower-Bound Arguments

Numerous lower-bound arguments proceed by focusing on special cases of the
original decision problem. As stated in Section 1.3, these special cases are promise
problems. To be concrete, we refer to an example mentioned in Section 5.2:
Razborov’s lower-bound on the monotone circuit complexity of Max-Clique [47,
Thm. 2] is commonly presented as a lower-bound on a promise problem that, for
k ≈ N2/3, has yes-instances that are N -vertex graphs having a clique of size k,
and no-instances that are complete (k − 1)-partite N -vertex graphs.

A similar strategy is adopted in numerous works (which are too numerous
to be cited here). The benefit of this strategy is that it introduces additional
structure that facilitates the argument. In some cases the act of restricting at-
tention to special cases is even repeated several times. Needless to say, a proper
formulation of this process involves the introduction of promise problems (which
correspond to these special cases). It also relies on the trivial fact that any
“solver” of a problem also solves its special cases (i.e., if some device solves the
promise problem (Πyes, Πno) then it also solves any (Π ′

yes, Π ′
no) that satisfies

both Π ′
yes ⊆ Πyes and Π ′

no ⊆ Πno).
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The use of promise problems becomes almost essential when one proves a
lower-bound by a reduction from a known lower-bound for a promise problem,
and the reduction uses the promise in an essential way. Consider, for example, the
separation between rank and communication complexity proven by Nisan and
Wigderson [44]. Their communication complexity lower bound is by a reduction
of “unique disjointness” to their communication problem, while noting that the
linear lower-bound on disjointness established by Razborov [49] holds also for
the promise problem “unique disjointness” (where the sets are either disjoint
or have an single element in their intersection). We stress that their reduction
of unique disjointness uses the promise in an essential way (and may fail for
instances that violate the promise).

6.2 BPP Is in the Polynomial-Time Hierarchy, Revisited

It is well-known that BPP is in the Polynomial-time Hierarchy (see proofs by
Lautemann [42] and Sipser [52]). However, the known proofs actually establish
stronger results. In my opinion, both the strength and the essence of the proof
comes out best via the terminology of promise problem. Specifically, we consider
the extension of the language classes RP and BPP to promise problems, and
show that BPP = RPRP .

Following Definition 2, we define RP and coRP as classes of promise prob-
lems that are solvable by one-sided error (rather than two-sided error) proba-
bilistic polynomial-time algorithms. Specifically, Π ∈ RP (resp., Π ∈ coRP) if
there exists a probabilistic polynomial-time algorithm A such that:

– For every x ∈ Πyes it holds that Pr[A(x) = 1] ≥ 1/2 (resp., Pr[A(x) = 1] =
1).

– For every x ∈ Πno it holds that Pr[A(x) = 0] = 1 (resp., Pr[A(x) = 0] ≥
1/2).

It is evident that RPRP ⊆ BPPBPP = BPP (where the last equality utilizes
standard “error reduction”). Thus, we focus on the other direction (i.e., BPP ⊆
RPRP), following the proof ideas of Lautemann [42].

Theorem 10 ([10], following [42]): Any problem in BPP is reducible by a one-
sided error randomized Karp-reduction to coRP.

Proof: Consider any BPP-problem with a characteristic function χ (which, in
case of a promise problem, is a partial function, defined only over the promise).
That is, for some probabilistic polynomial-time algorithm A and for every x on
which χ is defined it holds that Pr[A(x) �= χ(x)] ≤ 1/3. Thus, for some poly-
nomial p0 and some polynomial-time recognizable relation R0 ⊆ ∪n∈N({0, 1}n×
{0, 1}p0(n)) and for every x on which χ is defined it holds that

Prr∈{0,1}p0(|x|) [R0(x, r) �=χ(x)] ≤ 1
3

(1)
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where R0(x, y) = 1 if (x, y) ∈ R0 and R0(x, y) = 0 otherwise. By straightforward
“error reduction” we have that, for some other polynomial p and polynomial-time
recognizable relation R,

|{r ∈ {0, 1}p(|x|) : R(x, r) �=χ(x)}| <
2p(|x|)

2p(|x|) (2)

We show a randomized one-sided error (Karp) reduction of χ to coRP . We start
by stating the simple reduction, and next define the target promise problem.

The reduction: On input x ∈ {0, 1}n, the randomized polynomial-time map-
ping uniformly selects s1, ..., sm ∈ {0, 1}m, and outputs the pair (x, s), where
m = p(|x|) and s = (s1, ..., sm).

The promise problem: We define the following coRP promise problem, de-
noted Π = (Πyes, Πno).

– The yes-instances are pairs (x, s) such that for every r ∈ {0, 1}m there exists
an i satisfying R(x, r ⊕ si) = 1, where s = (s1, ..., sm) and m = p(|x|).

– The no-instances are pairs (x, s) such that for at least half of the possible
r ∈ {0, 1}m, it holds that R(x, r ⊕ si) = 0 for every i, where again s =
(s1, ..., sm) and m = p(|x|).

To see that Π is indeed a coRP promise problem, we consider the following
randomized algorithm. On input (x, (s1, ..., sm)), where m = p(|x|) = |s1| =
· · · = |sm|, the algorithm uniformly selects r ∈ {0, 1}m, and accepts if and only
if R(x, r⊕si) = 1 for some i ∈ {1, ..., m}. Indeed, yes-instances of Π are accepted
with probability 1, whereas no-instances are rejected with probability at least
1/2.

Analyzing the reduction: We claim that the above randomized mapping,
denoted by M , reduces χ to Π . Specifically, we will prove:

Claim 1: If x is a yes-instance (i.e., χ(x) = 1) then Pr[M(x) ∈ Πyes] > 1/2.
Claim 2: If x is a no-instance (i.e., χ(x) = 0) then Pr[M(x) ∈ Πno] = 1.

We start with Claim 2, which refers to χ(x) = 0 (and is easier to establish). Recall
that M(x) = (x, (s1, ..., sm)), where s1, ..., sm are uniformly and independently
distributed in {0, 1}m. Observe that (by Eq. (2)), for every possible choice of
s1, ..., sm ∈ {0, 1}m and every i ∈ {1, ..., m}, the fraction of r’s that satisfy
R(x, r ⊕ si) = 1 is at most 1

2m . Thus, for every possible choice of s1, ..., sm ∈
{0, 1}m, the fraction of r’s for which there exists an i such that R(x, r⊕ si) = 1
holds is at most m · 1

2m = 1
2 . Hence, the reduction always maps such an x to a

no-instance of Π (i.e., an element of Πno).
Turning to Claim 1 (which refers to χ(x) = 1), we will show shortly that in

this case, with very high probability, the reduction maps x to a yes-instance of
Π . We upper-bound the probability that the reduction fails (in case χ(x) = 1):
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Pr[M(x) �∈ Πyes] = Prs1,...,sm [∃r ∈ {0, 1}m s.t. (∀i) R(x, r ⊕ si) = 0]

≤
∑

r∈{0,1}m

Prs1,...,sm [(∀i) R(x, r ⊕ si) = 0]

≤ 2m ·
(

1
2m

)m

� 1
2

Thus, the randomized mapping M reduces χ to Π , with one-sided error on
yes-instances. Recalling that Π ∈ coRP, the theorem follows.

Comment: The traditional presentation uses the above reduction to show that
BPP is in the Polynomial-Time Hierarchy. One defines the polynomial-time
computable predicate ϕ(x, s, r) def=

∨m
i=1(R(x, si ⊕ r) = 1), and observes that

χ(x) = 1⇒ ∃s ∀r ϕ(x, s, r) (3)
χ(x) = 0⇒ ∀s ∃r ¬ϕ(x, s, r) (4)

Note that Claim 1 establishes that most sequences s satisfy ∀r ϕ(x, s, r), whereas
Eq. (3) only requires the existence of at least one such s. Similarly, Claim 2
establishes that for every s most choices of r violate ϕ(x, s, r), whereas Eq. (4)
only requires that for every s there exists at least one such r.

7 Using Promise Problems to Define Modified
Complexity Classes

In continuation to Section 6, we survey a recent suggestion of Vadhan for defin-
ing “modified” complexity classes in terms of promise problems [57]. We refer
to language classes such as BPP/ log and io-BPP (i.e., “computations that take
advice” and “infinitely often” classes). We comment that such classes are typi-
cally defined by modification to the operation of the computing device (or the
conditions applied to its computations). Vadhan’s suggestion is to define such
classes by modification to the class itself, provided that the (resulting) class is
understood as a class of promise problems. Indeed, this approach is sometimes
taken with respect to language classes like P/poly but the extension to BPP and
other probabilistic classes seems to require the use of promise problems. (Indeed,
in view of the fact that BPP/poly = P/poly (cf. [1]), we demonstrate the ap-
proach with respect to BPP/ log (which is the focus of some recent studies [6,
16]).)

7.1 Probabilistic Machines That Take Advice

Nonuniform “advice” versions of standard complexity classes are typified by the
following two equivalent definitions of the language class P/ log. The first states
that L ∈ P/ log if there exists a deterministic polynomial-time machine M and
sequence a1, a2, ... such that |an| = log n and M(x, a|x|) = χL(x) for every x,
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where χL(x) = 1 if and only if x ∈ L. The second states that L ∈ P/ log if there
exists a language L′ ∈ P and a sequence a1, a2, ... such that |an| = log n and
x ∈ L if and only if (x, a|x|) ∈ L′. Indeed, L′ can be defined as the language
accepted by the aforementioned machine M .

For BPP in place of P, however, the analogous first formulation does not seem
to imply the second one: Consider a probabilistic polynomial-time machine M
and sequence a1, a2, ... such that |an| = log n and Pr[M(x, a|x|) = χL(x)] ≥ 2/3
for every x. Then, it is unclear which pair language (extending L ∈ BPP/ log)
is in BPP; for example, {(x, a) : Pr[M(x, a) = 1] ≥ 2/3} is not necessarily a
BPP-set.

However, as suggested by Vadhan [57], we can define an adequate promise
problem that is in the (promise problem) class BPP. Specifically, for L and an’s
as above, consider Π ′ = (Π ′

yes, Π ′
no) such that Π ′

yes = {(x, a|x|) : x ∈ L} and
Π ′

no = {(x, a|x|) : x �∈ L}. Thus, we obtain a definition of BPP/ log in terms
of promise problems in BPP that extend the original languages. Similarly, for
a promise problem Π = (Πyes, Πno) ∈ BPP/ log (under the first definition),
we consider Π ′ = (Π ′

yes, Π ′
no) such that Π ′

yes = {(x, a|x|) : x ∈ Πyes} and
Π ′

no = {(x, a|x|) : x ∈ Πno}, where the an’s are as in the first definition.
Thus, we may say that a promise problem Π = (Πyes, Πno) is in the (promise
problem) class BPP/ log if there exists a promise problem Π ′ = (Π ′

yes, Π ′
no)

in BPP and a sequence a1, a2, ... such that |an| = log n and x ∈ Πyes implies
(x, a|x|) ∈ Π ′

yes while x ∈ Πno implies (x, a|x|) ∈ Π ′
no.

Needless to say, the same approach can be applied to other probabilistic
classes (e.g., RP and AM) and to any bound on the advice length. We note
that the need for promise problems arises only in case of probabilistic classes (and
not in case of deterministic or non-deterministic classes). The issue at hand is
related to the difficulties regarding complete problems and hierarchy theorems
(cf. Section 4.1); that is, not every advice (or machine) induces a bounded-error
probabilistic computation, and focusing on the advice (or machines) that do
induce such a computation is done by introducing a promise.

7.2 Infinitely Often Probabilistic Classes

Another modification with similar issues is the case of “infinitely often” classes.
The standard definition of io-BPP is that a problem is in this class if there exists
a probabilistic polynomial-time algorithm that solves it correctly for infinitely
many input lengths. The alternative formulation would say that a promise prob-
lem Π = (Πyes, Πno) is in the class io-BPP if there exists a promise problem
Π ′ = (Π ′

yes, Π
′
no) in BPP such that for infinitely many values of n it holds

that Π ′
yes ∩ {0, 1}n = Πyes ∩ {0, 1}n and Π ′

no ∩ {0, 1}n = Πno ∩ {0, 1}n.

8 Concluding Comments

We conclude with a couple of comments of “opposite nature”: The first com-
ment highlights the relevance of promise problems to the restricted study of
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(“traditional”) complexity classes that refer to language recognition problems.
The second comment asserts the applicability of the concept of promise problems
to a wider scope of complexity questions, including the study of search (rather
than decision) problems.

8.1 Implications on the Study of Classes of Languages

We have argued that promise problems are at least as natural as traditional
language recognition problems, and that the former offer many advantages. Still
tradition and simplicity (offered by language classes) have their appeal. We thus
mention that in some cases, the study of promise problems yields results about
language classes. The best example is the study of Statistical Zero-Knowledge
(SZK), which is surveyed in Section 4: Using promise problems it is possible
to present clear proofs of certain properties of the promise problem class SZK
(e.g., that SZK is closed under complementation [51] and that any problem
in SZK has a public-coin statistical zero-knowledge proof system [31]). But,
then, it follows that the same properties hold for the class of languages having
Statistical Zero-Knowledge proofs.

8.2 Applicability to Search Problems

As surveyed above, promise problems are a generalization of language recognition
problems, and thus constitute a general form of decision problems. However,
one may apply the concept of promise problems also in the context of search
problems, and indeed such an application is at least as natural. For example, it
is most natural to state search problems in terms of “promise problems” (rather
than requiring their solver also to handle instances that have no solution (and
hence also solve the corresponding decision problem)). That is, for a polynomially
bounded relation R, the search (promise) problem is given x that has a solution
to find such a solution (i.e., find a y such that (x, y) ∈ R). Hence, the promise
is that x has a solution (i.e., y such that (x, y) ∈ R), and nothing is required in
case x has no solution. (Note that the promise is important in case R is not an
NP-relation.)

As in case of decision problems, search (promise) problems offer a formalism
for the intuitive notion of special cases (i.e., problem restriction). In addition to
the natural appeal of the promise problem formulation of search problems, such
promise search problems offer a few fundamental advantages over traditional
search problems. The best example is the connection between (bounded fan-
in) circuit depth and communication complexity, established by Karchmer and
Wigderson [38]. Specifically, the (bounded fan-in) circuit depth of a function
f : {0, 1}n → {0, 1} is shown to equal the communication complexity of the
search promise-problem in which one party is given x = x1 · · ·xn ∈ f−1(1), the
other party is given y = y1 · · · yn ∈ f−1(0), and the task is to determine an
i ∈ [n] such that xi �= yi. Furthermore, the monotone depth of f equals the
communication complexity of a search problem with the same promise, where
the task is to find an i ∈ [n] such that xi = 1 and yi = 0. We stress that removing
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the promise yields a trivial communication complexity lower bound of n (e.g., by
reduction from the communication complexity of the identity function), which
of course has no relevance to the circuit depth of the function f .

8.3 The Bottom-Line

Our summary is that promise problems are a natural generalization of traditional
language-recognition problems, and often convey both the original intent of the
problem’s framer and more information about the problem’s complexity. Despite
a needed qualification for Turing reductions (Section 5.1), most results for lan-
guage classes carry over naturally and easily. In many cases, promise problems
enable to represent natural concepts (e.g., problem restriction, unique solutions,
and approximation) that cannot be represented in terms of language-recognition
problems. In other cases, the generalization to promise problems allows to de-
rive appealing results that are not known for the corresponding language classes.
Shimon Even, together with Selman and Yacobi, gave first voice to the technical
formulation of this natural outlook on the computational world.
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Appendix A: Proof Sketches for Theorems 4 and 5

We prove Theorem 5 first, and establish Theorem 4 later while using similar
techniques. We start by observing that solving the counting problem #RSAT for
very narrow margins of error is reducible to solving it for very large margins
of error. That is, for f(n) = 1 + (1/poly(n)) and g(n) < exp(nc) for any c ∈
(0, 1), it holds that #Rf

SAT is Karp-reducible to #Rg
SAT. The reduction is based

on the observation that, for formulae φ1, ..., φt over disjoint sets of variables, it
holds that RSAT(∧t

i=1φi) = {〈τ1, ..., τt〉 : (∀i) τi ∈ RSAT(φi)}. Thus, |RSAT(φt)| =
|RSAT(φ)|t, where φt is the formula obtained by concatenating t copies of the
formula φ (while using different variables in each copy). It follows that, for any
polynomially bounded t, the problem #Rf

SAT is Karp-reducible to #Rg
SAT, where

g(t(n) · n) = f(n)t(n), by mapping (φ, N) to (φt(|φ|), N t(|φ|)).

Reducing #Rg
SAT to SAT, for sufficiently large g. In view of the foregoing, we may

focus on randomly reducing #Rg
SAT to SAT, for g(n) = n2. Given an instance

(φ, N), with 1 ≤ N < g(|φ|), we reduce φ to itself, and notice that yes-instances
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are certainly satisfiable (because N ≥ 1), whereas no-instances are not satisfiable
(because they have less than N/g(|φ|) < 1 satisfying assignments).12 Thus, in
this case the reduction is valid. However, the interesting case is when N ≥ g(|φ|),
which in particular implies N > |φ|.

Given an instance (φ, N), with N > |φ|, our goal is to create a random
formula φ′ such that the expected cardinality of RSAT(φ′) equals |RSAT(φ)|/2k,
where k

def= log2 N − log2 |φ| ≥ 0. Furthermore, with very high probability, if
|RSAT(φ)| ≥ N then |RSAT(φ′)| > N/2k+1 > 1 and if |RSAT(φ)| < N/g(|φ|) then
RSAT(φ′) = ∅ (because 2−k ·N/g(|φ|)� 1).

We create the formula φ′ as the conjunction of φ and φh, where h : {0, 1}n →
{0, 1}k is a randomly chosen (Universal-2 [12]) hashing function and φh(x1,
..., xn) = 1 if and only if h(x1, ..., xn) = 0k. We stress that φ and φh use the same
variables x1, ..., xn, and that φh can be obtained by a parsimonious reduction of
the computation of h (i.e., verifying that h(x1, ..., xn) = 0k) to SAT. That is, we
consider the randomized mapping

(φ, N)→ φ′ where φ′(x) def= φ(x) ∧ (h(x) = 0log2(N/|φ|)) (5)
and h : {0, 1}|x|→ {0, 1}log2(N/|φ|) is a random hash function.

Using the “Leftover Hashing Lemma” [52, 8, 37] it follows that, with very high
probability, if |RSAT(φ)| ≥ N then |RSAT(φ′)| > N/2k+1 > 1 and if |RSAT(φ)| <
N/g(|φ|) then RSAT(φ′) = ∅. Thus, we randomly reduced the instance (φ, N)
of #Rg

SAT to deciding whether or not φ′ is satisfiable. That is, the randomized
mapping (φ, N) $→ φ′ of Eq. (5) is a randomized Karp-reduction of #Rg

SAT to
SAT. Combined with the reduction of #Rf

SAT to #Rg
SAT, this completes the proof

of Theorem 5.

Proof of Theorem 4: To prove Theorem 4 we combine the foregoing ideas with
two additional observations. The first observation is that if an n-variable for-
mula φ is unsatisfiable then, for every i ∈ {0, 1, ..., n}, the pair (φ, 2i) is a no-
instance of #Rg

SAT, whereas in case φ is satisfiable then, for i = �log2 |RSAT(φ)|�,
the pair (φ, 2i) is a yes-instance of #Rg

SAT. Furthermore, in the latter case,
2i ≤ |RSAT(φ)| < 2i+1. For sake of simplicity, we assume below that i ≥ log |φ|.
The second observation is that in case 2i ≤ |RSAT(φ)| < 2i+1, with very high
probability, the formula φ′

i (randomly constructed as in Eq. (5) using N = 2i),
has at least m

def= 2i/2(i−log |φ|)+1 = |φ|/2 satisfying assignments and at most
8m satisfying assignments. Our goal is to reduce the problem of counting the
number of satisfying assignments of φ′

i to uSAT. We consider a Cook-reduction
that, for every possible value j ∈ {m, ..., 8m}, constructs a formula φ′′

i,j that is
satisfiable if and only if φ′

i has at least j satisfying assignments; for example, we
may use

12 In case N < 1, we may map (φ, N) to a fixed unsatisfiable formula.
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φ′′
i,j(x

(1)
1 , ..., x(1)

n , ..., x
(j)
1 , ..., x(j)

n )

=

(
j∧

�=1

φ′
i(x

(�)
1 , ..., x(�)

n )

)∧(
j−1∧
�=1

(
(x(�)

1 , ..., x(�)
n ) < (x(�+1)

1 , ..., x(�+1)
n )

))
(6)

where (x(�)
1 , ..., x

(�)
n ) < (x(�+1)

1 , ..., x
(�+1)
n ) if and only if x

(�)
q < x

(�+1)
q for some

q and x
(�)
q ≤ x

(�+1)
q for every q. Furthermore, note that if φ′

i has exactly j
satisfying assignments then φ′′

i,j has a unique satisfying assignment. This suggests
the following randomized Cook-reduction from SAT to uSAT:

1. On input an n-variable formula φ, the oracle machine constructs the formulae
φ′′

i,j , for every i ∈ {log |φ|, ..., |φ|} and j ∈ {1, ..., 8m}, where φ′
i is obtained by

applying Eq. (5) to the pair (φ, 2i), and φ′′
i,j is obtained by applying Eq. (6)

to φ′
i.

(The case that φ has less than |φ| satisfying assignments is covered by i =
log |φ|, where effectively no hashing takes place, and thus φ′

i = φ. For this
reason, we have let j range in {1, ..., 8m} rather than in {m, ..., 8m}, a change
that causes no harm to larger values of i.)

2. The oracle machine queries the oracle on each of the formulae φ′′
i,j and accepts

if and only if at least one answer is positive.

Note that if φ is satisfiable then, with very high probability, at least one of the
formulae φ′′

i,j has a unique satisfying assignment (and thus the corresponding
query will be answered positively). On the other hand, if φ is unsatisfiable then
all the formulae φ′′

i,j are unsatisfiable (and thus all queries will be answered
negatively). This completes the proof of Theorem 4.

Appendix B: More Details Regarding the Study of SZK

In this appendix, we provide a more detailed presentation of the material sur-
veyed in Section 4.2, and describe some of the ideas underlying the proof of
central results. We start by recalling a few underlying notions.

The statistical difference (or variation distance) between the distributions (or
the random variables) X and Y is defined as

Δ(X, Y ) def=
1
2
·
∑

e

|Pr[X =e]−Pr[Y =e]| = max
S
{Pr[X ∈ S]−Pr[Y ∈ S]} (7)

We say that X and Y are δ-close if Δ(X, Y ) ≤ δ and that they are δ-far if
Δ(X, Y ) ≥ δ. Note that X and Y are identical if and only if they are 0-close,
and are disjoint (or have disjoint support) if and only if they are 1-far. The
entropy of a distribution (or random variables) X is defined as

H(X) def=
∑

e

Pr[X =e] · log2(1/Pr[X =e]) . (8)
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The entropy of a distribution is always non-negative and is zero if and only if
the distribution is concentrated on a single element. In general, if a distribution
that has support size N then its entropy is at most log2 N .

The distribution represented (or generated) by a circuit C : {0, 1}n → {0, 1}m

assigns each string α ∈ {0, 1}m probability |{s : C(s) = α}|/2n. The correspond-
ing random variable is C(Un), where Un denotes a random variable uniformly
distributed over {0, 1}n. A function μ : N→ [0, 1] is called negligible if it decreases
faster than any polynomial fraction; that is, for every positive polynomial p and
all sufficiently large n it holds that μ(n) < 1/p(n). A function ν : N → [0, 1] is
called noticeable if ν(n) > 1/p(n) for some positive polynomial p and all suffi-
ciently large n.

B.1 The Class SZK and Its Complete Problems

The class SZK consists of promise problems that have an interactive proof sys-
tem that is “statistically zero-knowledge” (with respect to the honest verifier).
Recall that interactive proof systems are two-party protocols in which a com-
putationally unbounded prover may convince a probabilistic polynomial-time
verifier to accept yes-instances, whereas no prover can fool the verifier into ac-
cepting no-instances. Both assertions hold with high probability, which can be
amplified by repetitions.

Definition 11 ([15, 24], following [33]) The two-party protocol (P, V ) is called
an interactive proof system for the promise problem Π = (Πyes, Πno) if V is a
probabilistic polynomial-time interactive machine and the following two condi-
tions hold

1. Completeness: For any x ∈ Πyes, with probability at least 2/3, the verifier
V accepts after interacting with the prover P on common input x.

2. Soundness: For any x ∈ Πno, with probability at least 2/3, the verifier V
rejects after interacting with any strategy on common input x.

We denote by 〈P, V 〉(x) the local view of V when interacting with P on common
input x, where the local view consists of x, the internal coin tosses of V , and the
sequence of messages it has received from P . The proof system (P, V ) is said to be
statistical zero-knowledge if there exists a probabilistic polynomial-time machine
S, called a simulator, such that for x ∈ Πyes the statistical difference between
〈P, V 〉(x) and S(x) is negligible as a function of |x|.

We stress that the completeness and zero-knowledge conditions refer only to
yes-instances, whereas the soundness condition refers only to no-instances. We
mention that Definition 11 refers only to honest-verifiers, but it is known that any
problem that has an interactive proof satisfying Definition 11 also has one that
is statistical zero-knowledge in general (i.e., with respect to arbitrary verifiers);
see [28, 31].

Definition 12 The class SZK consists of all promise problems that have a sta-
tistical zero-knowledge interactive proof system.
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The class SZK contains some promise problems that are widely believed not to
be in BPP (e.g., it contains a promise problem that is computationally equivalent
to the Discrete Logarithm Problem, cf. [24]). On the other hand, SZK ⊆ AM∩
coAM (cf. [15, 3]), which in turn lies quite low in the Polynomial-Time Hierarchy.

Approximating the distance between distributions. We consider promise prob-
lems that take as input a pair of circuits and refer to the statistical differ-
ence between the two corresponding distributions (generated by the two cir-
cuits). For (threshold) functions c, f : N → [0, 1], where c ≤ f , the promise
problem GapSDc,f = (Closec, Farf ) is defined such that (C1, C2) ∈ Closec if
Δ(C1, C2) ≤ c(|C1|+ |C2|) and (C1, C2) ∈ Farf if Δ(C1, C2) > f(|C1|+ |C2|). In
particular, we focus on promise problem GapSD

def= GapSD
1
3 , 2

3 . Interestingly, the
complexity of GapSD, which captures quite a good approximation requirement,
is computationally equivalent to a very crude approximation requirement (e.g.,
GapSD0.01,0.99). That is, the former problem is Karp-reducible to the latter:

Theorem 13 [51]: For some α > 0, there exists a Karp-reduction of GapSD
1
3 , 2

3

to GapSDε,1−ε, where ε(n) = 2−nα

. More generally, for every polynomial-time
computable c, f : N → [0, 1] such that c(n) < f(n)2 − (1/poly(n)) it holds that
GapSDc,f is Karp-reducible to GapSDε,1−ε.

Using a trivial reduction in the other direction, we conclude that for every c, f :
N → [0, 1] such that c(n) ≥ 2−nα

, c(n) < f(n)2 − (1/poly(n)) and f(n) ≥
1 − 2−nα

, the problems GapSDc,f and GapSD = GapSD
1
3 , 2

3 are computationally
equivalent (under Karp reductions). This equivalence is useful in determining
the complexity of GapSD (as well as all these GapSDc,f ’s). Specifically, in order
to show that SZK is Karp-reducible to GapSD, it is shown that SZK is Karp-
reducible to GapSD

1
2p2 , 1

p , for some polynomial p. On the other hand, in order
to show that GapSD is in SZK, it is shown that for ε(n) = 2−nα

the problem
GapSDε,1−ε is in SZK. Thus, one gets

Theorem 14 [51]: The promise problem GapSD is SZK-complete (under Karp-
reductions).

We stress that the promise problem nature of GapSD seems essential for showing
that GapSD ∈ SZK. On the other hand, the class SZK reduces naturally to a
promise problem with a non-trivial promise. For details, see Section B.2.

Approximating the entropy of a distribution. We consider two types of compu-
tational problems related to approximating the entropy of a distribution. The
first type consists of promise problems that take as input a circuit and a value
and refers to the relation between the entropy of (the distribution generated by)
the circuit and the given value. The second type of promise problems take as
input a pair of circuits and refer to the relation between the entropies of the
corresponding distributions (generated by the two circuits). Note that the two
types of problems are computationally equivalent (i.e., each is Cook-reducible
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to the other). We focus on the second type of problems, because (unlike the
first type) they are known to be complete for SZK under Karp-reductions.
Specifically, for a positive (slackness) function s : N → R+, the promise prob-
lem GapENTs = (Smallers, Largers) is defined such that (C1, C2) ∈ Smallers if
H(C1) ≤ H(C2) − s(|C1| + |C2|) and (C1, C2) ∈ Largerf if H(C1) ≥ H(C2) +
s(|C1| + |C2|). We focus on promise problem GapENT

def= GapENT1, and mention
the following two simple facts:

Fact 1: For every positive polynomial p and �ε(n) = n1−ε for any ε > 0, it
holds that the problems GapENT1/p, GapENT and GapENT�ε are computation-
ally equivalent (under Karp reductions).

Fact 2: The problem GapENT is Karp-reducible to its complement by the reduc-
tion that maps (C1, C2) to (C2, C1).

It turns out that the computational problems regarding entropy are computa-
tionally equivalent to the computational problems regarding statistical distance:

Theorem 15 [31]: The promise problems GapENT and GapSD are computation-
ally equivalent under Karp reductions.

Combining Theorems 14 and 15, it follows that GapENT is SZK-complete (under
Karp-reductions). Using Fact 2, it follows that SZK is closed under complemen-
tation.

B.2 Comments Regarding the Proofs of Theorems 13–15

The proofs of Theorems 13 and 15 rely on sophisticated manipulations of distri-
butions (or rather the corresponding sampling circuits). Although these proofs
are quite interesting, we focus on the proof of Theorem 14, which provides the
bridge between the aforementioned specific computational problems and the class
SZK. Indeed, the proof of Theorem 14 highlights the role of promise prob-
lems (with non-trivial promises) in the study of SZK, whereas the proofs of
Theorems 13 and 15 merely translate one promise problem (with a non-trivial
promise) to another.

Theorem 14 was proven by Sahai and Vadhan [51], and here we sketch the
ideas underlying their proof. Their proof consists of two parts: (1) showing that
GapSD has a statistical zero-knowledge proof system, and (2) showing that any
problem in SZK is Karp-reducible to GapSD.

The problem GapSD has a statistical zero-knowledge proof system: Using Theo-
rem 13, it suffices to show such a proof system for GapSDε,1−ε, where ε : N→ [0, 1]
is a negligible function (e.g., ε(n) = 2−nα

for some α > 0). Actually, we present
such a proof system for the complement problem (i.e., (Far1−ε, Closeε)), and
rely on the (highly non-trivial) fact that GapSD is reducible to its complement.13

13 This fact follows by combining Theorem 15 an Fact 2. An alternative proof of the
fact that GapSD is reducible to its complement was given in [51], before Theorem 15
was stated (let alone proved). Another alternative is to rely on an even earlier result
of Okamoto by which SZK is closed under complementation [45].
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Following an idea that originates in [33, 25], the protocol proceeds as follows,
with the aim of establishing that the two input distributions are far apart. The
verifier selects one of the input distributions at random and presents the prover
with a random sample generated according to this distribution. The verifier ac-
cepts if and only if the prover correctly identifies the distribution from which
the sample was taken. Observe that if the input distributions are far apart then
the prover can answer correctly with very high probability. On the other hand,
if the input distributions are very close then the prover cannot guess the correct
answer with probability significantly larger than 1/2. This establishes that the
protocol is an interactive proof (and thus that GapSD is in coAM). It can be
shown that this protocol is actually statistical zero-knowledge, intuitively be-
cause the verifier learns nothing from the prover’s correct answer which is a
priori known to to the verifier (in case the two distributions are far apart).

Any problem in SZK is Karp-reducible to GapSD: We rely on Okamoto’s Theo-
rem by which any problem in SZK has a public-coin14 statistical zero-knowledge
proof system [45]. (We comment that an alternative proof of that theorem
has subsequently appeared in [31], who showed that SZK is Karp-reducible
to GapENT while the latter problem has a public-coin statistical zero-knowledge
proof system.) We consider an arbitrary (public-coin) statistical zero-knowledge
proof system. Following Fortnow [15], we observe a discrepancy between the
behavior of the simulator on yes-instances versus no-instances:

– In case the input is a yes-instance, the simulator outputs transcripts that are
very similar to those in the real interaction. In particular, these transcripts
are accepting and the verifier’s behavior in them is as in a real interaction.
Resorting to the public-coin condition, this means that the verifier’s messages
in the simulation are (almost) uniformly distributed independently of prior
messages.

– In case the input is a no-instance, the simulator must output either reject-
ing transcripts or transcripts in which the verifier’s behavior is significantly
different from the verifier’s behavior in a real interaction. In particular, the
only way the simulator can produce accepting transcripts is by producing
transcripts in which the verifier’s messages are not “random enough” (i.e.,
they depend, in a noticeable way, on previous messages).

Thus assuming, without loss of generality, that the simulator only produces
accepting transcripts, we consider two types of distributions. The first type of the
distributions is obtained by truncating a random simulator-produced transcript
at a random “location” (after some verifier message), whereas the second type
is obtained by doing the same while replacing the last verifier message by a

14 An interactive proof is said to be of the public-coin type if the verifier is required
to send the outcome of any coin it tosses as soon as it sees it. In other words, the
verifier’s messages are uniformly distributed strings (of predetermined length), and
the verifier’s decision depends only on the messages exchanged (rather than on some
secret random choices made by the verifier).
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random one. Note that both distributions can be implemented by polynomial-
size circuits that depend on the input to the proof system being analyzed (and
that these two circuits can be constructed in polynomial-time given the said
input). The key observation is that if the input is a yes-instance then the two
corresponding distributions will be very close, whereas if the input is a no-
instance then there will be a noticeable distance between the two corresponding
distributions. Thus, we reduced any problem having a (public-coin) statistical
zero-knowledge proof system to GapSDμ,ν , where μ is a negligible function and
ν is a noticeable function. The proof is completed by using Theorem 13 (while
noting that μ(n) < ν(n)2 − (1/poly(n))).

Alternative proofs of Theorems 14 and 15: In sketching the proof of Theorem 14,
we relied on two theorems of Okamoto [45]: The closure of SZK under com-
plementation and the existence of public-coin statistical zero-knowledge proof
systems for any problem in SZK. Since Okamoto’s arguments are hard to fol-
low, it is worthwhile noting that an alternative route does exist. In [31] it is
proved that GapENT is SZK-complete (under Karp-reductions), without relying
on Okamoto’s results (but while using some of his ideas). Furthermore, the sta-
tistical zero-knowledge proof system presented for GapENT is of the public-coin
type. Thus, the two aforementioned theorems of Okamoto follow (using the fact
that GapENT is easily reducible to its complement). Consequently, the proof of
Theorem 14 need not refer to Okamoto’s paper [45]. (Theorem 15 follows im-
mediately from the fact that both GapENT and GapSD are SZK-complete, but a
direct proof is possible by employing the ideas underlying [31, 51].)

Appendix C: On the Derandomization of BPP Versus MA

The following presentation is adapted from [32, Sec. 5.4]. We denote byMA the
class of promise problems of the form Π = (Πyes, Πno), where there exists a
polynomial p and a polynomial-time (verifier) V such that

x ∈ Πyes =⇒ ∃w ∈ {0, 1}p(|x|) Prr∈{0,1}p(|x|) [V (x, w, r) = 1] = 1

x ∈ Πno =⇒ ∀w ∈ {0, 1}p(|x|) Prr∈{0,1}p(|x|) [V (x, w, r) = 1] ≤ 1
2

(All other complexity classes used below also refer to promise problems.)

Proposition (folklore): Suppose that RP ⊆ DT IME(t), for some monotoni-
cally non-decreasing and time-constructible function t : N → N. Then, MA ⊆
∪i∈NNT IME(ti), where ti(n) = t(ni).

In particular, RP = P implies MA = NP.

Proof: Each promise problem Π = (Πyes, Πno) inMA gives rise to a promise
problem Π ′ = (Π ′

yes, Π ′
no), where

Π ′
yes

def= {(x, w) : ∀r ∈ {0, 1}p(|x|) V (x, w, r) = 1}

Π ′
no

def= {(x, w) : x ∈ Πno} .
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where p and V are as above. Note that, for every (x, w) ∈ Π ′
yes it holds

that Prr∈{0,1}p(|x|) [V (x, w, r) = 1] = 1, whereas for every (x, w) ∈ Πno
it holds that Prr∈{0,1}p(|x|) [V (x, w, r) = 1] ≤ 1/2. Thus, Π ′ ∈ coRP (i.e.,
(Π ′

no, Π ′
yes) ∈ RP). Using the hypothesis (and the closure of DT IME under

complementation), we have Π ′ ∈ DT IME(t). On the other hand, note that for
every x ∈ Πyes there exists w ∈ {0, 1}p(|x|) such that (x, w) ∈ Π ′

yes, whereas
for every x ∈ Πno and every w ∈ {0, 1}p(|x|) it holds that (x, w) ∈ Π ′

no. Thus, Π
is “non-deterministically reducible” to Π ′ (i.e., by a “reduction” that maps x to
(x, w), where w ∈ {0, 1}p(|x|), such that x ∈ Πyes is mapped to (x, w) ∈ Π ′

yes),
and Π ∈ NT IME(t′) follows, where t′(n) = t(n + p(n)) < t(ni) for some i ∈ N.
The proposition follows.
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Abstract. Advances in technology have rendered the Internet a viable
medium for employing multiple independent computers collaboratively
in the solution of a single computational problem, leading to the new
genre of collaborative computing that we term Internet-based comput-
ing (IC). Scheduling a computation for IC presents challenges that were
not encountered with earlier modalities of collaborative computing, espe-
cially when the computation’s constituent tasks have interdependencies
that constrain their order of execution. This paper surveys an ongoing
study of (an abstraction of) the scheduling problem for such computa-
tions for IC. The work employs a “pebble game on computation-dags,”
that abstracts the process of allocating a computation’s interdependent
tasks to participating remote computers. The goal of a schedule, moti-
vated by two related scheduling challenges, is to maximize the production
rate of tasks that are eligible for execution. First, in many modalities of
IC, remote computers become available at unpredictable times. Always
having a maximal number of execution-eligible tasks enhances the uti-
lization of available resources. Second, the fact that remote computers
are often not dedicated to this IC computation, hence, may be more dila-
tory than anticipated, can lead to a type of “gridlock” that results when
a computation stalls because (due to dependencies) all execution-eligible
tasks are already allocated to remote computers. These motivating chal-
lenges raise the hope that the optimality results presented here within
an abstract IC setting have the potential of improving efficiency and
fault-tolerance in real IC settings.

1 Introduction

A variety of so-called pebble games on dags3 (directed acyclic graphs) have been
shown, over the course of several decades, to yield elegant formal analogues of a
variety of problems related to scheduling the tasks/nodes of a computation-dag.
The basic idea underlying such games is to use tokens (called “pebbles”) to model
the progress of a computation on a dag: the placement or removal of pebbles of
various types—which is constrained by the dependencies modeled by the dag’s
arcs4—represents the changing (computational) status of the tasks represented
3 Precise definitions of all required notions appear in Section 2.
4 Pending the definitions of Section 2, one can refer to an algorithms text such as [5]

for examples of task interdependencies and their representations via dags.
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by the dag’s nodes. Pebble games have been used to study problems as diverse
as register allocation [17, 3], interprocessor communication in parallel comput-
ers [11], “out-of-core” memory accesses [10], and the bandwidth-minimization
problem for sparse matrices (which can be formulated as a genre of schedul-
ing problem) [20]. Additionally, pebble games have been shown to model many
complexity-theoretic problems perspicaciously; see the survey [18]. The current
paper is devoted to surveying ongoing joint work, [19, 21, 16], by the authors and
M. Yurkewych (U. Massachusetts), which uses a new pebble game to study the
problem of scheduling computation-dags for Internet-based computing (IC, for
short). While this new game shares its basic structure with the “no recompu-
tation allowed” pebble game of [20], it differs markedly from that game in the
resource one strives to optimize.

A word about IC will explain the pebble game we study. Advancing tech-
nology has rendered the Internet a viable medium for employing multiple in-
dependent computers collaboratively in the solution of a single computational
problem. A variety of mechanisms have been developed for IC, with “Web-based
computing” [14], Peer-to-Peer computing (P2PC) [2, 23], and Grid computing
[6, 7] being among the most popular.5 Most forms of IC—including those just
cited—lend themselves naturally to the master-slave computing metaphor, in
which a master computer enlists the aid of remote “slave” (or, client) computers
to collaborate in the computation of a massive collection of compute-intensive
tasks. In rough terms, the differences among the listed modalities are as follows.
In “Web-based computing,” the remote clients are individuals who allow the
master to download a program that will run in background on each client’s pc;
the clients are typically anonymous and, hence, untrusted; the project usually
exists to perform a single computation. Grid computing—so named in anal-
ogy with a power grid—typically involves a fixed assemblage of computing sites
that contract with one another to share computing resources (possibly, but not
necessarily, including computing cycles); Grid members are usually mutually
trusted. P2PC often shares with “Web-based computing” the anonymity of re-
mote clients; it usually shares with Grid computing the revolving role of master
and client, hence, a lifetime that goes beyond a single computation.

As with all new computing technologies, IC engenders novel scheduling chal-
lenges, even while enabling a large variety of computations that could not be han-
dled efficiently by any fixed-size assemblage of dedicated computing agents (e.g.,
multiprocessors or clusters of workstations). Two related challenges that arise in
IC motivate our study. First, in many modalities of IC, remote clients become
available (to receive work) at unpredictable times. Second, the fact that remote
clients are often not dedicated to the IC computation being performed raises
the possibility that some may be slower than anticipated in returning the results
from tasks allocated to them. (Indeed, in “Web-based computing,” a client may

5 Definitions and terminology in this fast-evolving field tend to vary from one re-
searcher to another, but the definitions here should convey the essential nature of
the three modalities of IC. We put “Web-based computing” in quotes because this
specific modality has no generally accepted name.
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never return its results.) When the tasks being computed are mutually indepen-
dent, then (finite) delays by clients are just an annoyance; in particular, delays
by “old” clients can never preclude having a new task available for allocation to
a new client who becomes available. In contrast, when the tasks being computed
have interdependencies that constrain their order of execution, dilatory clients
may cause the supply of eligible tasks to be very small at certain times. Indeed,
in the limit, an IC computation could occasionally encounter a type of “gridlock”
wherein the computation stalls because (due to intertask dependencies) all tasks
that are eligible for execution are already in the hands of remote clients. The
dual scheduling challenges inherent in the preceding scenarios—to enhance the
utilization of remote clients and to prevent “gridlock”—motivated the work we
survey here.

As is common in the literature on scheduling (cf. [8, 9]), the studies we survey
view the intertask dependencies of the computations being scheduled as having
the structure of a dag. The goal of our schedules is to allocate the tasks of a given
computation-dag to remote clients in a way that always maximizes the number
of tasks that are eligible for execution. Although details must await further de-
velopment and/or reference to [21], we can pictorially hint at the significance of
the quality metric we are studying. Imagine that one wants to schedule a compu-
tation whose task-dependencies have the structure of the evolving mesh in (the
upper left corner of) Fig. 1. If one schedules the dag along its “diagonal levels,”
as depicted in Fig. 2, then after having executed x tasks, one has roughly

√
x

tasks that are eligible to be the next executed task. In contrast, if one chooses
to schedule the dag along its “square shells,” as depicted in Fig. 3, then one
never has access to more than three tasks that are eligible for execution. This
example presents an atypically extreme contrast, but it should suggest that the
rate of producing execution-eligible tasks may vary significantly for a given dag
depending on the schedule used to execute the dag.

Of course, even if one were able to schedule all dags optimally within our
idealized setting, one may not always eliminate the two motivating challenges.
However, our scheduling strategies would provide guidelines that would provably
improve utilization of remote clients and decrease the likelihood of gridlock—
when tasks are executed in the order in which they are assigned to the clients.
(One avenue toward achieving the desired order is to monitor the behavior and
performance of remote clients, as mandated in [1, 13, 22].) And, importantly, the
guidelines we derive prescribe actions that are under the control of the IC master
and are independent of the behavior of the remote clients!

Our presentation centers on three topics. In Section 2.2, we define the IC
Pebble Game that underlies the theory we are developing. Section 3 presents
several results that suggest the range of ways that a given family of dags can
fit into our embryonic theory—from not admitting an optimal schedule, at one
extreme, to admitting infinitely many such schedules, at the other. Section 4
sketches some of the analyses used to derive optimal schedules for certain very
uniform families of dags, notably, those in Fig. 1. Section 5 describes our latest,
most exciting work, which establishes a foundation for a decomposition-based



294 Grzegorz Malewicz and Arnold L. Rosenberg
. .

 .

. .
 .

. .
 .

. .
 .

. .
 .

3,0 2,1 1,2 0,3

0,21,12,0

1,0 0,1

0,0

0100 10 11

101100

1

10111010

001000

0000 0001

0

λ

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Level

3

1

2

0

1,0

2,0

3,0

4,0

2,1

3,1

0,0

1,1

2,2

0,1

1,2

0,2

0,3

1,3 0,4

Fig. 1. Clockwise from upper left: the (2-dimensional) evolving mesh, a (binary)
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Fig. 2. Computing a typical diagonal level of the evolving mesh. “X” denotes an exe-
cuted node; “E” denotes an eligible node.

procedure that derives optimal schedules for a broad range of dags of quite
complex, nonuniform structures. Finally, Section 6 describes our response to the
fact that some dags admit no optimal schedules within the theory discussed thus
far: a batched-scheduling analogue of our theory, within which optimal schedules
exist for all families of dags. The major issue in the batched-scheduling setting
is how complex (near-)optimal schedules are to derive.

2 A Formal Model for Scheduling Dags for IC

2.1 Computation-Dags

A directed graph (digraph, for short) G is given by: a set of nodes NG and a set of
arcs (or, directed edges) AG , each having the form (u → v), where u, v ∈ NG . A
path in G is a sequence of arcs that share adjacent endpoints, as in the following
path from node u1 to node un:
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E
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All  X

E

E

All  X
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All  X

Fig. 3. A schedule for M2 that traverses square levels. “X” denotes an executed node;
“E” denotes an eligible node. The long arrows indicate sequences of node-executions.

(u1 → u2), (u2 → u3), . . . , (un−2 → un−1), (un−1 → un) (1)

A dag (short for directed acyclic graph) G is a digraph that has no cycles; i.e., G
cannot contain a path of the form (1) wherein u1 = un. When a dag G is used
to model a computation, i.e., is a computation-dag:

– each node v ∈ NG represents a task of the computation;
– an arc (u→ v) ∈ AG represents the dependence of task v on task u: v cannot

be executed until u is.

For each arc (u → v) ∈ AG , we call u a parent of v and v a child of u in G.
The transitive extensions of the parent and child relations are, respectively, the
ancestor and descendant relations. Excepting the degenerate dag that has no
nodes: every dag has at least one parentless node (which is called a source);
every finite dag has at least one childless node (which is called a sink). The
outdegree of a node is its number of children. A dag G is bipartite if:

1. NG can be partitioned into subsets X and Y such that, for every arc (u →
v) ∈ AG , u ∈ X and v ∈ Y ;

2. each v ∈ NG is incident to some arc of G, i.e., is either the node u or the
node w of some arc (u → w) ∈ AG . (Prohibiting “isolated” nodes avoids
degeneracies.)

G is connected if, when one ignores the orientation of G’s arcs, there is a path
connecting every pair of distinct nodes. A connected bipartite dag H is a con-
stituent of G just when:

1. H is an induced subdag of G: NH ⊆ NG , and AH comprises all arcs (u →
v) ∈ AG such that {u, v} ⊆ NH.

2. H is maximal: the induced subdag of G on any superset of H’s nodes—i.e.,
any set S such that NH ⊂ S ⊆ NG—is not connected and bipartite.

Let G1,G2, . . . ,Gn be connected bipartite dags that are pairwise disjoint, in the
sense that NGi

∩NGj
= ∅ for all distinct indices i and j. The sum of these dags,

denoted G1 + G2 + · · ·+ Gn, is the bipartite dag whose node-set and arc-set are,
respectively, the unions of the corresponding sets of G1,G2, . . . ,Gn.



296 Grzegorz Malewicz and Arnold L. Rosenberg

We have not posited the finiteness of computation-dags. While the inter-
task dependencies in nontrivial computations usually have cycles—caused, say,
by loops—it is useful to “unroll” these loops when scheduling the computa-
tion’s individual tasks. This converts the computation’s (possibly modest-size)
computation-digraph into a sequence of expanding “prefixes” of what “evolves”
into an enormous—often infinite—computation-dag. One typically has better
algorithmic control over the “steady-state” scheduling of such computations if
one expands these computation-dags to their infinite limits and concentrates on
scheduling tasks in a way that leads to a computationally expedient sequence of
evolving prefixes.

Fig. 1 displays four dags that are studied in [19, 21]: the mesh-dag in the
upper left is an infinite dag (which has no sinks); the other three dags are finite.
In Section 5, we outline the (de)composition-based theory of [16], which shows
how to construct these four dag-families from bipartite building blocks.

2.2 The Internet-Computing Pebble Game

For brevity, we describe the Internet-Computing (IC) Pebble Game within a
“pull”-based scheduling framework, in which remote clients approach the server
seeking work; the reader can easily adapt our description to a “push”-based
framework, in which the server polls remote clients for availability.

The Idealized IC Pebble Game The IC Pebble Game on a computation-dag
G involves one player S, the Server, who has access to unlimited supplies of two
types of pebbles: eligible pebbles, whose presence indicates a task’s eligibility
for execution, and executed pebbles, whose presence indicates a task’s having
been executed. We now present the rules of the Game, which simplify those of
the original IC Pebble Game of [19, 21].

Our simplification resides in the assumption that by monitoring remote
clients (as mandated in, say, [1, 13, 22]) the Server can enhance the likeli-
hood, if not the certainty, that remotely allocated tasks will be executed
in order of their allocation. We idealize by assuming that the Server can
ensure this ordering exactly.

Fig. 4 presents the rules of the IC Pebble Game; Fig. 2 illustrates the rules via
a succession of moves of the Game on the 2-dimensional evolving mesh.

For each step t of a play of the IC Pebble Game on a dag G, let X(t) denote
the number of executed pebbles on G’s nodes at step t, and let E(t) denote
the analogous number of eligible pebbles. Of course, X(t) = t in our idealized
version of the Game, although this is not true in the original version of [19]

We measure the quality of a play of the IC Pebble Game on a dag G by
the size of E(t) at each step t of the play—the bigger E(t) is, the better.
Our goal is an IC optimal schedule, in which, for all steps t, E(t) is as
big as possible.
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— S begins by placing an eligible pebble on each unpebbled source of G.
/*Unexecuted sources are always eligible for execution, having no parents
whose prior execution they depend on.*/

— At each step, S
• selects a node that contains an eligible pebble,
• replaces that pebble by an executed pebble,
• places an eligible pebble on each unpebbled node of G all of whose

parents contain executed pebbles.
— S’s goal is to allocate nodes in such a way that every node v of G eventually

contains an executed pebble.
/*This modest goal is necessitated by the possibility that G is infinite.*/

Fig. 4. The Rules of the IC Pebble Game

The significance of IC quality—hence of IC optimality—stems from the following
intuitive scenarios. (1) Schedules that produce eligible nodes maximally fast
may reduce the chance of a computation’s “stalling” because no new tasks can
be allocated pending the return of already assigned ones (the “gridlock” of the
Introduction). (2) If the Server receives a batch of requests for nodes at (roughly)
the same time, then an IC-optimal schedule allows maximally many requests to
be satisfied, thereby enhancing the exploitation of clients’ available resources.

3 The Boundaries of the Playing Field

The property of IC optimality is so demanding that it is not a priori clear that
such schedules ever exist! The property demands that there be a single schedule
Σ for a dag G such that, at every step of the computation, Σ maximizes the
number of eligible nodes across all schedules for G. In principle, it could be
that every schedule that maximizes the number of eligible nodes at some step t
requires that a certain set of t nodes is executed, while every analogous schedule
for step t + 1 requires that a disjoint set of t + 1 nodes is executed. Indeed,
there exist (simple) dags that do preclude IC-optimal scheduling for precisely
this reason. However, there is a large class of computationally significant dags
that can be scheduled IC optimally. In this section, we exhibit, in turn:

– simple dags that admit no IC-optimal schedule;
– a familiar family of dags (evolving meshes), each of which admits a unique

strategy for producing IC-optimal schedules; we also show that a natural
alternative to this schedule is actually pessimal in IC quality;

– a familiar family of dags (evolving trees) all of whose schedules are IC opti-
mal.

Regrettably, we do not yet know the complexity of determining whether or not a
given dag admits any IC-optimal schedule; this is an inviting research challenge.
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Dags that admit no IC-optimal schedule. We begin with two recalcitrant dags;
the reader can easily produce others.

(a) (b)

Fig. 5. Two simple dags that admit no IC-optimal schedule.

Fig. 5 contains two simple dags that do not admit any IC-optimal schedule —
for precisely the reason mentioned in the opening paragraph of the section. For
the 2-component dag of Fig. 5(a): in order to maximize the number of eligible
nodes at time t = 1, after one node is executed, one must begin executing
the dag with the (unique) outdegree-1 source; in order to maximize the number
of eligible nodes at time t = 2, after two nodes are executed, one must
begin executing the dag with the two outdegree-2 sources. For the tree-dag6 of
Fig. 5(b): in order to maximize the number of eligible nodes at time t = 2, after
two nodes are executed, one must begin executing the dag with the subtree in
the lefthand dashed box; in order to maximize the number of eligible nodes at
time t = 4, after four nodes are executed, one must begin executing the dag
with the subtree in the righthand dashed box.

Dags with a unique IC-optimal scheduling strategy. Fig. 1 (upper left) depicts
the first four levels of the evolving two-dimensional mesh-dag M2. The nodes
of M2 are all ordered pairs of nonnegative integers; its arcs connect each node
〈v1, v2〉 to its two children 〈v1+1, v2〉 and 〈v1, v2 +1〉. Node 〈0, 0〉 isM2’s unique
source (often called its origin). The kth diagonal level ofM2, denoted Lk, is the
set of nodes whose coordinates sum to k. While M2 admits infinitely many
IC-optimal schedules, all of them implement the strategy of proceeding along
successive diagonal levels, from one end to the other.

Theorem 1 ([19]) (a) For any schedule that allocates nodes sequentially along

successive diagonal levels of M2, E(t) = n whenever
(

n

2

)
≤ t <

(
n + 1

2

)
.

(b) For any schedule for M2, if t lies in the preceding range, then E(t) can be
as large as n, but no larger.

6 A tree-dag T is any dag such that, if one ignores the orientations of T ’s arcs, then
the resulting graph is a tree (in the graph-theoretic sense).
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It follows thatM2’s IC-optimal schedules are precisely the diagonal-threading
schedules.

The intuition underlying Theorem 1 resides in the following facts.

– Each row or column of M2 contains at most one eligible node.
– All ancestors (parents, parents of parents, . . . ) of each eligible node ofM2

are executed.

Theorem 1 asserts that a lazy regimen for executingM2—i.e., one that always
executes the oldest eligible node, say, by proceeding up each diagonal level of
M2—is IC optimal (albeit not uniquely so). In contrast, an eager regimen—i.e.,
one that always executes the newest eligible node—is actually pessimal in IC
quality. One implementation of the eager regimen is the “square-shell” schedule
depicted schematically in Fig. 3. By fleshing out this schematic depiction to a
level of detail commensurate with that of the lazy, “diagonal-level,” schedule
of Fig. 2, the reader will find that, under the “square-shell” schedule, no more
than three nodes of M2 are ever simultaneously eligible, in contrast with the
ever-growing number of eligible nodes promised by Theorem 1 for any lazy
schedule.

Dags for which any schedule is IC optimal. Consider the evolving binary out-tree
of Fig. 6. A simple argument shows that every valid schedule for the evolving

λ

10

01 10 1100

. .
 .

. .
 .

. .
 .

. .
 .

Fig. 6. An evolving binary out-tree.

binary out-tree T is IC optimal. To wit, at every moment during the execution
of T , the executed nodes are the internal nodes of a full binary sub-out-tree
T ′ of T , and the eligible nodes are the leaves of T ′. It follows that at every
step of any schedule for T , the number of eligible nodes is precisely one more
than the number of executed nodes.

The messages of this section.

– There are significant families of dags that admit IC-optimal schedules.
– The disparity between the IC quality of an optimal schedule and that of a

natural competitor can be very large.
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– No scheduling strategy is going to guarantee IC-optimal schedules for all
dags.

The remaining sections summarize our responses to these messages.

4 IC-optimal Schedules for Specific Families of Dags

In this section, we complete the scheduling story for the dags in Fig. 1 by dealing
with the three “reductive” dags.

Theorem 2 ([21]) A schedule for any reduction-mesh, reduction-tree, or FFT-
dag is IC optimal if, and only if, it is parent-oriented—i.e., it executes all parents
of a node in consecutive steps.

Since the proofs for the three families of dags share are almost identical in
structure (cf. [21]), we sketch the proof only for the reduction-mesh.

The nodes of the �-level reduction-mesh M� comprise the set of ordered pairs
of integers {〈x, y〉 | 0 ≤ x + y < �}. M�’s arcs connect each node v = 〈x, y〉 to
node 〈x − 1, y〉 whenever x > 0 and to node 〈x, y − 1〉 whenever y > 0. The
integer x + y is the level of node 〈x, y〉. M�’s � source nodes are the nodes at
level �− 1; M�’s unique sink node is node 〈0, 0〉, the sole occupant of level 0.

Focus on a play of the IC Pebble Game on M�. Say that at step t of the
play, each level l ∈ {0, 1, . . . , � − 1} of M� has E

(t)
l eligible nodes and X

(t)
l

executed nodes. Let c be the smallest level-number for which E
(t)
c + X

(t)
c > 0.

Claim. Given the current profile 〈X(t)
l | 0 ≤ l < �〉 of executed nodes:

1. The aggregate number of eligible nodes at time t, E(t) def=
∑�−1

i=0 E
(t)
i , is

maximized if all executed nodes on each level of M� are consecutive.7

2. Once E(t) is so maximized, we have c ≤ E(t) ≤ c + 1.

Each nonsource eligible node of M� has two executed parents; any two
consecutive nonsource eligible nodes share an executed parent. We thus have
the following system of inequalities.

E
(t)
l ≤ X

(t)
l+1 −X

(t)
l − 1 for l ∈ {c, c + 1, . . . , �− 2};

E
(t)
�−1 = �−X

(t)
�−1.

(2)

1. If all executed nodes occur consecutively along a level l + 1 of M�, then
the inequality involving E

(t)
l in (2) is an equality. Therefore, all inequalities in

(2) are equalities when the executed nodes at every level occur consecutively.
Further, such consecutiveness may decrease the value of c, by rendering new
nodes eligible at lower-numbered levels. Consequently, this arrangement of
executed nodes maximizes the value of E(t).
7 Nodes u0, u1, . . . , uk−1 are consecutive on level l of M� just when each uj = 〈m +

j, l − m − j〉 for some 0 ≤ m ≤ l − k, 0 ≤ j < k.
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2. Summing the (now) equalities in system (2) yields an explicit expression
for the maximum value of E(t) in terms of

∑�−1
i=0 X

(t)
i = t, namely: E(t) =∑�−1

i=c E
(t)
i = c+1−X

(t)
c . Part (2) of the claim now follows, because when the

executed nodes at each level of M� occur consecutively, we must have X
(t)
c ≤ 1:

a larger value would imply that X
(t)
c−1 + E

(t)
c−1 > 0.

For reduction-meshes, parent-orientation means “level-by-level” execution.
For reduction-trees, the phrase means that each tree-node u and its “sibling”
(i.e., the node that shares a child with u) must be executed in consecutive
steps. For FFT-dags, the phrase means that each node u and its “butterfly
partner”(i.e., the node that shares two children with u) must be executed in
consecutive steps.

5 Toward a Theory of Scheduling Composite Dags

The similarities in the structures of the proofs of Theorem 2 for its three families
of dags led us to seek a structure-based explanation of the similarities. We now
describe the results of this quest, which has gone far beyond just the motivating
explanation.

A hallmark of the nascent scheduling theory of [16] is that it seeks explicit IC-
optimal schedules only for connected bipartite dags (which experience has shown
is already often quite a challenge). It then uses these bipartite dags as building
blocks for constructing complex dags that inherit their IC-optimal schedules
from those of the bipartite dags. We outline this development in this section.

The following simple result is quite useful in analyzing scheduling strategies
for possible IC optimality. It should allow the reader to intuit the proofs for
several of the results that we present.

Lemma 3 ([16]) If a schedule Σ for a dag G is altered to execute all of G’s
nonsinks before any of its sinks, then the IC quality of the resulting schedule is
no less than Σ’s.

5.1 A Sampler of Bipartite Building Blocks

Our study applies to any repertoire of connected bipartite building-block dags
that one chooses to build complex dags from. For illustration, though, we focus
on the following specific building blocks. The following descriptions proceed left
to right along successive rows of Fig. 7. For all descriptions, we use the drawings
in Fig. 7 to refer to “left” and “right.”

The first three dags are named for the letters suggested by their topologies.
W-dags. For each integer d > 1, the (1, d)-W-dagW1,d has one source and d

sinks; its d arcs connect the source to each sink. Inductively, for positive integers
a, b, the (a + b, d)-W-dag Wa+b,d is obtained from the (a, d)-W-dag Wa,d and
the (b, d)-W-dag Wb,d by identifying (or, merging) the rightmost sink of the
former dag with the leftmost sink of the latter. W-dags epitomize “expansive”
computations.
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(1,4)−W: (2,4)−W: (1,3)−M: (2,3)−M:

3−N: 3−Cycle: (3,4)−Clique: (4,3)−Clique:

Fig. 7. The building blocks of semi-uniform dags.

M-dags. For each integer d > 1, the (1, d)-M-dagM1,d has d sources and one
sink; its d arcs connect each source to the sink. Inductively, for positive integers
a, b, the (a + b, d)-M-dag Ma+b,d is obtained from the (a, d)-M-dag Ma,d and
the (b, d)-M-dag Mb,d by identifying (or, merging) the rightmost source of the
former dag with the leftmost source of the latter. M-dags epitomize “contractive”
(or, “reductive”) computations.

N-dags. For each integer s > 0, the s-N-dag N s has s sources and s sinks;
its 2s − 1 arcs connect each source v to sink v and to sink v + 1 if the latter
exists. Specifically, N s is obtained from Ws−1,2 by adding a new source on the
right whose sole arc goes to the rightmost sink. The leftmost source of N s has
a child that has no other parents; we call this source the anchor of N s.

(Bipartite) Cycle-dags. For each integer s > 1, the s-(Bipartite) Cycle-dag
Cs is obtained from N s by adding a new arc from the rightmost source to the
leftmost sink—so that each source v has arcs to sinks v and v + 1 mod s.

(Bipartite) Clique-dags. For integers s, s′ > 1, the (s, s′)-(Bipartite) Clique-
dag Qs,s′ has s sources, s′ sinks, and an arc from each source to each sink. (We
actually deal only with (s, s)-Cliques, which we henceforth denote Qs; we present
general (s, s′)-Cliques as an invitation to the reader.)

5.2 Building Dags Via Composition

Our basic technique for constructing complex dags is the following inductively
defined operation of composition.

– We start with any set B of connected bipartite dags; these will serve as our
base set.

– Given dags G1,G2 ∈ B—which could be copies of the same dag with nodes
renamed to achieve disjointness—we obtain a composite dag G as follows.
• Let the composite dag G begin as the sum, G1 + G2, of the dags G1,G2.

We rename nodes to ensure that NG is disjoint from NG1 and NG2 .
• We select some set S1 of sinks from the copy of G1 in the sum G1 + G2,

and an equal-size set S2 of sources from the copy of G2 in the sum.
• We pairwise identify (i.e., merge) the nodes in the sets S1 and S2 in some

way. The resulting set of nodes is G’s node-set; the induced set of arcs is
G’s arc-set.

– We add the dag G thus obtained to the base set B.
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We denote the composition operation by ⇑ and refer to the resulting dag G as a
composite dag of type [G1 ⇑ G2]. (Note that the structure of G is not identified
uniquely by its type. Our theory does not require knowledge of this detailed
structure.) The roles of G1 and G2 in creating G are asymmetric: G1 contributes
sinks, while G2 contributes sources.

We can now simply illustrate the natural correspondence between the node-
set of a composite dag and those of its constituents, via Fig. 1:

– The evolving mesh M2 is composite of type W1,2 ⇑ W2,2 ⇑ W3,2 ⇑ · · ·.
– A binary reduction-tree is obtained by pairwise composing many instances

of M1,2 (seven instances in the figure).
– The reduction-mesh M5 is composite of typeM5,2 ⇑ M4,2 ⇑ M3,2 ⇑M2,2 ⇑
M1,2.

– The FFT dag is obtained by pairwise composing many instances of C2 = Q2

(twelve instances in the figure).

As hinted at in the preceding description, the composition operation is asso-
ciative, so we do not have to keep track of the order in which constituent dags
are incorporated into a composite dag.

Lemma 4 ([16]) The composition operation on dags is associative. That is, for
all dags G1, G2, G3, a dag is composite of type [[G1 ⇑ G2] ⇑ G3] if, and only if, it
is composite of type [G1 ⇑ [G2 ⇑ G3]].

One can garner intuition for the proof of Lemma 4 from the dags on Fig. 8.

(c)(b)(a)

Fig. 8. A sampler of composite dags, each of which admits an IC-optimal schedule.

5.3 The Priority Relation �
The next ingredient in our scheduling theory is the following relation on bipar-
tite dags. This relation is the mechanism that we can often use to “inherit”
an IC-optimal schedule for a composite dag from IC-optimal schedules for its
constituents.
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Let the disjoint bipartite dags G1 and G2, having s1 and s2 sources, respec-
tively, admit the IC-optimal schedules Σ1 and Σ2, respectively. Say that the
following inequalities hold.8

(∀x ∈ [0, s1]) (∀y ∈ [0, s2]) :
EΣ1(x) + EΣ2(y) ≤ EΣ1(min{s1, x + y}) + EΣ2(max{0, x + y − s1}).

(3)

Then we say that G1 has priority over G2, denoted G1 & G2.
By Lemma 3, the inequalities in (3) basically say that one never decreases

IC quality by executing a source of G1, in preference to a source of G2, whenever
possible.

It is important, both conceptually and algorithmically, that the relation & is
transitive. This fact is a bit trickier to prove than one might think at first blush.

Lemma 5 ([16]) The relation & on bipartite dags is transitive.

One simple, but consequential application of Lemma 5 is:

Corollary 6 ([16]) Let G1,G2, . . . ,Gn be pairwise disjoint bipartite dags. If G1 &
G2 & · · · & Gn, then G1 & (G2 + G3 + · · ·+ Gn).

5.4 Scheduling �-Linear Compositions of Composite Dags

We arrive finally at the first major result of the theory, which provides the
sought explanation for the structures of the proofs of Theorem 2 for the three
families of dags. More importantly, this result gives structure to our quest for a
decomposition-based scheduling theory.

Say that dag G is a &-linear composition of the connected bipartite dags
G1,G2, . . . ,Gn if:

1. G is composite of type G1 ⇑ G2 ⇑ · · · ⇑ Gn;
2. each Gi & Gi+1, for all i ∈ [1, n− 1].

Dags that are &-linear compositions inherit IC-optimal schedules from their
constituents.

Theorem 7 ([16]) Let G be a &-linear composition of G1,G2, . . . ,Gn, where
each Gi admits an IC-optimal schedule Σi. The schedule Σ for G that proceeds
as follows is IC optimal.

1. Σ executes the nodes of G that correspond to sources of G1, in the order
mandated by Σ1, then the nodes that correspond to sources of G2, in the
order mandated by Σ2, and so on, for all i ∈ [1, n].

2. Σ finally executes all sinks of G in any order.

The proof of Theorem 7 essentially demonstrates that when a dag G is a
&-linear composition, then the priority relation & on G’s bipartite constituents
is compatible with the executional priorities that are inherent in G’s being a dag.
8 [a, b] denotes the set of integers {a, a + 1, . . . , b}.
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5.5 Scheduling Composite Dags Via Decomposition

The framework developed thus far in this section is descriptive rather than pre-
scriptive. If a computation-dag G is constructed from bipartite building blocks
via composition, and if we can identify the “blueprint” used to construct G,
and if the underlying building blocks are interrelated in a certain way, then the
strategy prescribed in Theorem 7 produces an optimal schedule for G. We now
describe how the algorithmic challenge hidden in the preceding if’s is addressed
in [16]: given a computation-dag G, how does one apply the preceding frame-
work to it? The algorithms we describe now attempt to decompose G in order to
expose the structure needed to apply Theorem 7. We thereby derive IC-optimal
schedules for a large variety of dags.

We describe a suite of algorithms that: (a) reduce any computation-dag G
to its “transitive skeleton” G′, a simplified version of G that shares the same
set of optimal schedules; (b) decompose G′ to determine whether or not it is
constructed from bipartite building blocks via composition, thereby exposing a
“blueprint” for G′; (c) specify an optimal schedule for any such G′ that is built
from building blocks that are interrelated under &.

Skeletonizing Input Dags For any dag G and nodes u, v ∈ NG , we write
u ⇒G v to indicate that there is a path from u to v in G. An arc (u → v) ∈
AG is a shortcut if there is a path u ⇒G v that does not include the arc. Of
course, removing shortcuts from a dag does not alter internode connectivities.
By removing all shortcuts from a dag G, one obtains G’s (transitive) skeleton
(or, transitive reduction). This dag, which is unique, is the smallest subdag of G
that shares G’s transitive closure [5]; we call this dag σ(G). One finds in [12] a
polynomial-time algorithm that generates σ(G) from G. (In fact, a very simple
algorithm suffices, that just removes, in turn, each arc (u→ v) from G and tests
if v is still accessible from u.)

Eliminating shortcuts is a critical first step in our decompsitional scheduling
strategy, because dags that are compositions of bipartite dags have no shortcuts.

Since G shares its node-set with σ(G), any schedule that executes one dag
also executes the other. This is important because any schedule executes G as
efficiently (in IC quality) as it executes σ(G). A special case of this result appears
in [19].

Theorem 8 ([16]) A schedule Σ has the same IC quality when executing a dag
G as when executing σ(G). In particular, if Σ is IC optimal for σ(G), then it is
IC optimal for G.

Decomposing a Composite Dag Once we have a shortcut-free dag G, we can
start trying to decompose it, to find subdags whose composition yields G. We
now describe this process.
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Selecting a constituent. We begin by selecting any constituent9 of G all of
whose sources are also sources of G; call the selected constituent B1 (the notation
emphasizing that B1 is bipartite).

In Fig. 1: Every candidate B1 for the FFT dag comprises a copy of
C2 = Q2 included in levels 2 and 3; every candidate for the reduction-tree
comprises a copy of M1,2; the unique candidate for the reduction-mesh
comprises M4,2.

Detaching a constituent. We “detach” B1 from G by deleting the nodes
of G that correspond to sources of B1, all incident arcs, and all resulting isolated
sinks. We thereby replace G with a pair of dags 〈B1,G′〉, where G′ is the remnant
of G remaining after B1 is detached.

If the remnant G′ is not empty, then we continue the process of selection
and detachment. If G was a composition of bipartite dags, then we produce a
sequence of the form

G =⇒ 〈B1,G′〉 =⇒ 〈B1, 〈B2,G′′〉〉 =⇒ 〈B1, 〈B2, 〈B3,G′′′〉〉〉 =⇒ · · · ,

that leads ultimately to a complete decomposition of G into a sequence compris-
ing all of its constituents: B1,B2, . . . ,Bn.

We claim that the described process does, indeed, recognize whether or not
G is a composite dag, and, if so, it produces the constituents from which G is
composed (possibly, of course, in an order that differs from their original order
of composition).

Theorem 9 ([16]) Let the dag G be composite of type G1 ⇑ G2 ⇑ · · · ⇑ Gn. The
decomposition process produces a sequence B1,B2, . . . ,Bn of constituents of G
such that:

– G is composite of type B1 ⇑ B2 ⇑ · · · ⇑ Bn;
– {B1,B2, . . . ,Bn} = {G1,G2, . . . ,Gn}.

It is fruitful to construct a super-dag that abstracts a dag G’s structure, as
exposed by the decomposition process. This super-dag, which we denote S(B1 ⇑
· · · ⇑ Bn), has the constituents B1,B2, . . . ,Bn as its nodes and has an arc from
each constituent Bi to each of the constituents that it is detached from during
the decomposition. Fig. 9 depicts the super-dag obtained from decomposing the
3-dimensional FFT dag. Easily that the linearization B1, . . . ,Bn produced by
the described decomposition process is a topological sort [5] of the super-dag
S(B1 ⇑ · · · ⇑ Bn).

Scheduling a Composite Dag Via Its Super-Dag Our remaining challenge
is to determine, given a super-dag S(B1 ⇑ · · · ⇑ Bn) that is produced by our
decomposition process, whether or not there is a topological sort of the super-dag
that linearizes the supernodes in an order that honors relation&. We now present
sufficient conditions for this to occur, verified via a linearization algorithm.
9 Recall the technical definition of “constituent” from Section 2.1.
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100 001 101 010 110 011 111

Fig. 9. The 3-dimensional FFT dag and its associated super-dag.

Theorem 10 ([16]) Say that the dag G is composite of type B1 ⇑ · · · ⇑ Bn and
that, for each pair of constituents, Bi, Bj with i �= j, either Bi & Bj or Bj & Bi.
Then G is a &-linear composition whenever the following holds.

Whenever Bj is a child of Bi in S(B1 ⇑ · · · ⇑ Bn), we have Bi & Bj.

Theorem 10 is proved via the following algorithm that determines whether
or not G is a &-linear composition of the Bi.

1. We begin with a topological sort, B̂ def= Bα(1), . . . ,Bα(n) of SG
def= S(B1 ⇑ · · · ⇑

Bn).
2. We invoke the hypothesis that & is a (weak) order on the Bi’s to reorder B̂

according to &, using a stable10 comparison sort.

Let B def= Bβ(1) & · · · & Bβ(n) be the linearization of SG produced by the sort.
We claim that B is also a topological sort of SG . This follows easily because we
start with a topological sort of SG and employ a stable sort on relation &. We
conclude that G is composite of type Bβ(1) ⇑ · · · ⇑ Bβ(n). In other words, B is
the desired &-linearization of G.

Once we have the decomposition B, we can invoke Theorem 7 to obtain an
IC-optimal schedule for G.

6 A Batched Approach to Scheduling

Our development of a dag-scheduling theory for IC is still ongoing: we are making
steady progress in both refining and extending the work described in Section 5.
Yet, the stringent demands of IC optimality, as reflected in the requirement that
a schedule maximize the number of eligible nodes at every step of a computa-
tion, guarantees the existence of simple dags that admit no IC-optimal schedule
(cf. Section 3); hence, they preclude this theory from ever being comprehensive.
10 Stability means that if Bi � Bj and Bj � Bi, then the sort maintains the original

positions of Bi and Bj .
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Responding to this fact, we are investigating alternative formulations of the IC-
scheduling problem. We have developed one such in [15], and we describe its
rudiments in this section.

In the batched version of the IC Pebble Game, which abstracts the batched
version of the IC-scheduling problem, the Server does not respond to individual
requests by Clients as they come in. Instead, it services requests at fixed inter-
vals, hence responds to batches of requests rather than individual ones. This
formulation of IC scheduling simplifies the scheduling problem along one axis,
while complicating it along another. We now focus on optimizing the production
of eligible nodes:

1. for a single step of the computation, rather than uniformly for all steps;
2. while executing r (perforce, eligible) nodes as a batch, rather than a single

node.

The (algorithmic) greed built into this version of IC-scheduling—by the first
condition—ensures that there is an optimal solution to every instance of the
problem. The complication built into this version—by the second condition—
turns out to endow the challenge of finding this optimal solution with the likely
computational intractability of NP-hardness. (The solution is easy to find when
r = 1.) Fig. 10 presents the rules of the game.

— S begins by placing an eligible pebble on each unpebbled source node of G.
/*Unexecuted source nodes are always eligible for execution, having no parents
whose prior execution they depend on.*/

— At each step t—when there is some number, say et, of eligible pebbles on
G’s nodes—S is approached by some number, say rt, of Clients, requesting
tasks. In response, S:
• selects min{et, rt} tasks that contain eligible pebbles,
• replaces those pebbles by executed pebbles,
• places eligible pebbles on each unpebbled node of G all of whose parents

contain executed pebbles.
— S’s goal is to allocate nodes in such a way that every node v of G eventually

contains an executed pebble.
/*This modest goal is necessitated by the possibility that G may be infinite.*/

Fig. 10. The Rules of the Batch-IC Pebble Game

As in earlier sections, we call a node eligible (resp., executed) when it
contains an eligible (resp., an executed) pebble, and we talk about executing
nodes rather than tasks.

The Batch-IC scheduling problem (BICSO). Our goal is to play the
Batch-IC Pebble Game in a way that maximizes the number of eligible pebbles
on G at every step of the Game. That is, for each step t of a play of the Game
on a dag G, if there are currently et eligible tasks, and if rt Clients request
tasks, then we want the Server to execute a set of min{et, rt} eligible nodes
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that will result in the largest possible number of eligible tasks at step t + 1.
We thus arrive at the following optimization problem.

Batched IC-Scheduling (Optimization version) (BICSO)
Instance: ı = 〈G, X, E; r〉, where:

• G is a computation-dag;
• X and E are disjoint subsets of NG that satisfy the following;

There is a step of some play of the Batched IC Pebble Game on G
in which X is the set of executed nodes and E the set of eligible
nodes on G.

• r is in the set [1, |E|].
Problem: Find a cardinality-r set R ⊆ E that maximizes the number of eligi-

ble nodes on G after executing the nodes in R, given that the nodes in X
are already executed.

Note that the process of solving BICSO automatically carries with it a guarantee
of optimality.

In contrast to the search for IC-optimal schedules for dags, every instance of
BICSO can be solved! The only question is how hard it is computationally to find
a solution. Unfortunately, solving BICSO is likely computationally intractable,
even for dags of quite restricted structure.

Theorem 11 ([15]) BICSO is NP-hard, even when restricted to bipartite dags.

Of course, results such as Theorem 11 automatically trigger a search for
special classes of dags that can be scheduled optimally in polynomial time. Not
surprisingly, bipartite tree-dags—and compositions thereof—are the first such
class that we discovered. The algorithm guaranteed by the following theorem
contains a dynamic program as a central component.

Theorem 12 ([15]) There is a polynomial-time algorithm Σtree that solves
BICSO for any bipartite tree-dag T .

Theorem 12 is actually more textured than it seems to be at first. On the
optimistic side: The theorem gives us more scheduling power than is immedi-
ately apparent. Specifically, we show in [15] how to build upon the theorem
to solve BICSO for any composition of bipartite tree-dags. This is important,
since compositions of such tree-dags need not be either leveled or (in their undi-
rected incarnations) cycle-free. On the less-optimistic side: Algorithm Σtree is
computationally rather inefficient: its timing polynomial has high degree. In re-
sponse, we have sought nontrivial classes of dags for which we could solve BICSO
efficiently, even if the solution was only approximate. We use the word “approx-
imate” here in its usual technical sense: we insist that the number of eligible
nodes produced by the scheduling algorithm in response to r requests be within
a predictable factor of the maximum possible number, given the then-current
number of eligible nodes.
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Our initial success in this quest involved the family E of bipartite expansive-
dags. Each such dag E is a bipartite dag wherein each source v has an associated
number ϕv ≥ 2 such that: v has ϕv children that have no parent other than v
and at most ϕv other children. Expansive-dags epitomize computations that are
“expansive” but may have complex interdependencies. A simple algorithm that
we call Algorithm Σexp approximates a solution to BICSO for the family E.

Algorithm Σexp implements the following natural, fast heuristic for schedul-
ing a dag E ∈ E. For each source v of E , say that there are ϕv nodes that have
v as their sole parent and ψv nodes that have other parents also. If there are r
requests for eligible nodes at time t, then Σexp selects the r eligible nodes
that have the largest associated integers ϕv. Of course, this greedy heuristic
may deviate from optimality because it ignores the “bonuses” that may arise
from executing eligible nodes that are siblings in E , but it does come close to
optimality.

Theorem 13 ([15]) For any instance ı = 〈E , X, E; r〉 of BICSO, where E ∈ E,
Algorithm Σexp will, in time O(|E|), find a solution to BICSO, whose increase
in the number of eligible nodes is at least one-fourth the optimal increase.

Work continues in trying to extend both Theorems 12 and 13, by expanding
the classes of dags for which we can tractably solve, or quickly approximate a
solution to BICSO.

7 Conclusions and Projections

We have described two related pebble games that abstract the problem of schedul-
ing computation-dags for Internet-based computing. Both games place an eli-
gible pebble (which represents a task’s being eligible for execution) on every
node all of whose parents contain executed pebbles (which represents a task’s
having been executed). At each step: one game selects a single eligible pebble
to replace with an executed pebble; the other selects a variable number of eli-
gible pebbles to replace (based on the input). With both games, the placement
of a new executed pebble may cause the placement of new eligible pebbles.
Both games strive, under somewhat different rules, to maximize the number of
nodes that contain eligible pebbles.

The IC Pebble Game takes as input a dag G. It seeks an execution schedule
for G that maximizes the number of nodes that hold eligible pebbles at every
step of the game. We have described the underpinnings of a theory of scheduling
under the IC Pebble Game, which builds on the decomposition of an input dag
G into bipartite “building-block” dags. When the decomposition exposes G to be
a composition of building blocks that are suitably iterrelated under the priority
relation, then the theory generates a schedule for G that is optimal. Ongoing
work, some in collaboration with G. Cordasco (U. Salerno), seeks to expand the
range of dags that the theory can schedule optimally, both by expanding the
repertoire of building blocks that it can deal with [4] and by extending the scope
of the priority relation. Other work, some in collaboration with I. Foster and
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M. Wilde of Argonne National Laboratory, seeks to assess the impact of the
emerging theory on a real IC project.

The Batched-IC Pebble Game takes as input a dag G, some e of whose
nodes hold eligible pebbles, and an integer r ≤ e of “requests.” It seeks to
find a set of r nodes currently holding eligible pebbles such that executing
those nodes will allow the placement of maximally many new eligible pebbles.
Results obtained thus far have shown the problem of solving instances of this
problem optimally to be NP-hard (with the decision version being NP-complete).
The problem is solvable in polynomial time for composite tree-dags, yet not effi-
ciently. The problem is efficiently approximable for certain special classes of dags.
Ongoing work here is delving further into the search for efficiently schedulable
classes of dags and efficiently approximable classes.

For both pebble games, attempts are also being made to assess the quality
of schedules produced by simple heuristics.
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Abstract. We present a self-contained and detailed description of the
parallel-prefix adder of Ladner and Fischer. Very little background is as-
sumed in digital hardware design. The goal is to understand the rational
behind the design of this adder and view the parallel-prefix adder as an
outcome of a general method.

1 Introduction

This essay is about how to teach adder designs for undergraduate Computer
Science (CS) and Electrical Engineering (EE) students. For the past eight years
I have been teaching the second hardware course in Tel-Aviv University’s EE
school. Although the goal is to teach how to build a simple computer from basic
gates, the part I enjoy teaching the most is about addition. At first I thought
I felt so comfortable with teaching about adders because it is a well defined,
very basic question, and the solutions are elegant and can be proved rigorously
without exhausting the students. After a few years, I was able to summarize all
these nice properties simply by saying that this is the most algorithmic topic
in my course. Teaching has helped me realize that appreciation of algorithms is
not straightforward; I was lucky to have been influenced by my father. In fact,
while writing this essay, I constantly asked myself how he would have presented
this topic.
When writing this essay I had three types of readers in mind.

– Lecturers of undergraduate CS hardware courses. Typically, CS students
have a good background in discrete math, data structures, algorithms, and
finite automata. However, CS students often lack enthusiasm for hardware,
and the only concrete machine they are comfortable with is a Turing ma-
chine. To make teaching easier, I added a rather long preliminaries section
that defines the hardware model and presents some hardware terminology.
Even combinational gates and flip-flops are briefly described.

– Lecturers of undergraduate EE hardware students. In contrast to CS stu-
dents, EE students are often enthusiastic about hardware (including devices,
components, and commercial products), but are usually indifferent to for-
mal specification, proofs, and asymptotic bounds. These students are eager

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 313–347, 2006.
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to learn about the latest buzzwords in VLSI and microprocessors. My chal-
lenge, when I teach about adders, is to convince the students that learning
about an old and solved topic is useful.

– General curious readers (especially students). Course material is often pre-
sented in the shortest possible way that is still clear enough to follow. I am
not aware of a text that tells a story that sacrifices conciseness for insight
about hardware design. I hope that this essay could provide such insight
to students interested in learning more about what happens “behind the
screen”.

1.1 On Teaching Hardware

Most hardware textbooks avoid abstractions, definitions, and formal claims and
proofs (Müller and Paul [MüllerPaul00] is an exception). Since I regard hardware
design as a subbranch of algorithms, I think it is a disadvantage not to follow
the format of algorithm books. I tried to follow this rule when I prepared lecture
notes for my course [Even04]. However, in this essay I am lax in following this
rule. First, I assumed that the readers could easily fill in the missing formalities.
Second, my impression of my father’s teaching was that he preferred clarity over
formality. On the other hand, I tried to present the development of a fast adder
in a systematic fashion and avoid ad-hoc solutions. In particular, a distinction
is made between concepts and representation (e.g., we interpret the celebrated
“generate-carry” and “propagate-carry” bits as a representation of functions,
and introduce them rather late in a specific design in Sec. 6.7).

I believe the communication skills of most computer engineers would greatly
benefit if they acquired a richer language. Perhaps one should start by modeling
circuits by graphs and using graph terminology (e.g., out-degree vs. fanout, depth
vs. delay). I decided to stick to hardware terminology since I suspect that people
with a background in graphs are more flexible. Nevertheless, whenever possible,
I tried to use graphs to model circuits (e.g., netlists, communication graphs).

1.2 A Brief Summary

This essay mainly deals with the presentation of one of the parallel-prefix adders
of Ladner and Fischer [LadnerFischer80]. This adder was popularized by Brent
and Kung [BrentKung82] who presented a regular layout for it as well as a
reduction of its fanout. In fact, it is often referred to as the “Brent-Kung” adder.
Our focus is on a detailed and self-contained explanation of this adder.

The presentation of the parallel-prefix adder in many texts is short but
lacks intuition (see [BrentKung82, MüllerPaul00, ErceLang04]). For example,
the carry-generate (gi) and carry-propagate (pi) signals are introduced as a way
to compute the carry bits without explaining their origin1. In addition, an as-
sociative operator is defined over pairs (gi, pi) as a way to reduce the task of

1 The signals gi and pi are defined in Sec. 6.7
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computing the carry-bits to a prefix problem. However, this operator is intro-
duced without explaining how it is derived.

Ladner and Fischer’s presentation does not suffer from these drawbacks. The
parallel-prefix adder is systematically obtained by “parallelizing” the “bit-serial
adder” (i.e., the trivial finite state machine with two states, see Sec. 4.1). Ac-
cording to this explanation the pair of carry-generate and carry-propagate signals
represent three functions defined over the two states of the bit-serial adder. The
associative operator is simply a composition of these functions. The mystery is
unravelled and one can see the role of each part.

Ladner and Fischer’s explanation is not long or complicated, yet it does not
appear in textbooks. Perhaps a detailed and self-contained presentation of the
parallel-prefix adder will influence the way parallel-prefix adders are taught. I
believe that students can gain much more by understanding the rational behind
such an important design. Topics taught so that the students can add some items
to their “bag of tricks” often end up in the “bag of obscure and forgotten tricks”.
I believe that the parallel-prefix adder belongs to the collection of fundamental
algorithmic paradigms and can be presented as such.

1.3 Confusing Terminology (A Note for Experts)

The terms “parallel-prefix adder” and “carry-lookahead adders” are used in-
consistently in the literature. Our usage of these terms refers to the algorithmic
method employed in obtaining the design rather than the specifics of each adder.
We use the term “parallel-prefix adder” to refer to an adder that is based on
a reduction of the task of computing the carry-bits to a prefix problem (de-
fined in Sec. 6.3). In particular, parallel-prefix adders in this essay are based on
the parallel prefix circuits of Ladner and Fischer. The term “carry-lookahead
adder” refers to an adder in which special gates (called carry-lookahead gates)
are organized in a tree-like structure. The topology is not precisely a tree for
two reasons. First, often connections are made between nodes in the same layer.
Second, information flows both up and down the tree

One can argue justifiably that, according to this definition, a carry-lookahead
is a special case of a parallel-prefix adder. To help the readers, we prefer to make
the distinction between the two types of adders.

1.4 Questions

Questions for the students appear in the text. The purpose of these questions
is to help students check their understanding, consider alternatives to the text,
or just think about related issues that we do not focus on. Before presenting a
topic, I usually try to convince the students that they have something to learn.
The next question is a good example for such an attempt.

Question 1. 1. What is the definition of an adder? (Note that this is a question
about hardware design, not about Zoology.)
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2. Can you prove the correctness of the addition algorithm taught in elementary
school?

3. (Assuming students are familiar with the definition of the delay (i.e., depth)
of a combinational circuit) What is the smallest possible delay of an adder?
Do you know of an adder that achieves this delay?

4. Suppose you are given the task of adding very long numbers. Could you
share this work with friends so that you could work on it simultaneously to
speed up the computation?

1.5 Organization

We begin with preliminaries in Section 2. This section is a brief review of digital
hardware design. In Section 3, we define two types of binary adders: a combina-
tional adder and a bit-serial adder. In Section 4, we present trivial designs for
each type of adder. The synchronous adder is an implementation of a finite state
machine with two states. The combinational adder is a “ripple-carry adder”.
In Section 5, we prove lower bounds on the cost and delay of a combinational
adder. Section 6 is the heart of the essay. In it, we present the parallel-prefix
circuit of Ladner and Fischer as well as the parallel-prefix adder. In Section 7, we
discuss various issues related to adders and their implementation. In Section 8,
we briefly outline the history of adder designs. We close with a discussion that
attempts to speculate why the insightful explanation in [LadnerFischer80] has
not made it into textbooks.

2 Preliminaries

2.1 Digital Operation

We assume that inputs and outputs of devices are always either zero or one.
This assumption is unrealistic due to the fact that the digital value is obtained
by rounding an analog value that changes continuously (e.g., voltage). There is
a gap between analog values that are rounded to zero and analog values that are
rounded to one. When the analog value is in this gap, its digital value is neither
zero or one.

Although unrealistic, the advantage of this assumption is that it simplifies
the task of designing digital hardware. We do need to take precautions to make
sure that this unrealistic assumption will not render our designs useless. We set
strict design rules for designing circuits to guarantee well defined functionality.

We often use the term signal. A signal is simply zero or one value that is
output by a gate, input to a gate, or delivered by a wire.

2.2 Building Blocks

The first issue we need to address is: what are our building blocks? The building
blocks are combinational gates, flip-flops, and wires. We briefly describe these
objects.
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Combinational gates. A combinational gate (or gate, in short) is a device that
implements a Boolean function. What does this mean? Consider a Boolean func-
tion f : {0, 1}k → {0, 1}�. Now consider a device G with k inputs and � outputs.
We say that G implements f if the outputs of G equal f(α) ∈ {0, 1}� when the
input equals α ∈ {0, 1}�. Of course, the evaluation of f(α) requires time and
cannot occur instantaneously. This is formalized by requiring that the inputs of
G remain stable with the value α for at least d units of time. After d units of
time elapse, the output of G stabilizes on f(α). The amount of time d that is
required for the output of G to stabilize on the correct value (assuming that the
inputs are stable during this period) is called the delay of a gate.

Typical gates are inverters and gates that compute the Boolean or/and/xor
of two bits. We depict gates by boxes; the functionality is written in the box.
We use the convention that information flows rightwards or downwards. Namely,
The inputs of a box are on the right side and the outputs are on the left side (or
inputs on the top side and outputs on the bottom side).

We also consider a particular gate, called a full-adder, that is useful for
addition, defined as follows.

Definition 1 (Full-Adder). A full-adder is a combinational gate with 3 inputs
x, y, z ∈ {0, 1} and 2 outputs c, s ∈ {0, 1} that satisfies: 2c+ s = x+ y + z. (Note
that each bit is viewed as a zero/one integer.)

The output s of a full-adder is called the sum output, while the output c
of a full-adder is called the carry-out output. We denote a full-adder by fa. A
half-adder is a degenerate full-adder with only two inputs (i.e., the third input
z of the full-adder is always input a zero).

We do not discuss here how to build a full-adder from basic gates. Since
a full-adder has a constant number of inputs and outputs, every (reasonable)
implementation has constant cost and delay.

Flip-Flops. A flip-flop is a memory device. Here we use only a special type of
flip-flops called edge triggered D-flip-flops. What does this mean? We assume
that time is divided into intervals, each interval is called a clock cycle. Namely,
the ith clock cycle is the interval (ti, ti+1]. A flip-flop has one input (denoted
by D), and one output (denoted by Q). The output Q during clock cycle i + 1
equals the value of the input D at time ti (end of clock cycle i). We denote a
flip-flop by ff.

This functionality is considered as memory because the input D is sampled
at the end of clock cycle i. The sampled value is stored and output during the
next clock cycle (i.e., clock cycle i + 1). Note that D may change during clock
cycle i + 1, but the output Q must stay fixed.

We remark that three issues are ignored in this description: (i) Initialization.
What does a flip-flop output during the first clock cycle (i.e., clock cycle zero)?
We assume that it outputs a zero. (ii) Timing - we ignore timing issues such as
setup time and hold time. (iii) The clock signal is missing. (The role of the clock
signal is to mark the beginning of each clock cycle.) In fact, every flip-flop has
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an additional input for a global signal called the clock signal. We assume that
the clock signal is used only for feeding these special inputs, and that all the
clock inputs of all the flip-flops are fed by the same clock signal. Hence, we may
ignore the clock signal.

Wires. The idea behind connecting a wire between two components is to take
the output of one component and use it as input to another component. We
refer to an input or an output of a component as a port. In this essay, a wire can
connect exactly two ports; one port is an output port and the other port is an
input port. We assume also that a wire can deliver only a single bit.

We will later see that there are strict rules regarding wires. To give an idea of
these rules, note that it makes little sense to connect two outputs ports to each
other. However, it does make sense to feed multiple input ports by the same
output port. We, therefore, allow different wires to be connected to the same
output port. However, we do not allow more than one wire to be connected to
the same input port. The reason is that multiple wires feeding the same input
port could cause an ambiguity in the definition of the input value.

The number of inputs ports that are fed by the same output port is called
the fanout of the output. In the hardware design community, the fanout is often
defined as the number of inputs minus one. We prefer to define the fanout as
the out-degree.

We remark that very often connections are depicted by nets. A net is a set
of input and output ports that are connected by wires. In graph terminology, a
net is a hyperedge. Since we are not concerned in this essay with the detailed
physical design, and do not consider complicated connections such as buses, we
consider only point-to-point connections. An output port that feeds multiple
input ports can be modelled by a star of directed edges that emanate from the
output port. Hence, one can avoid using nets. Another option is to add trivial
gates in branching points, as described in the next section.

2.3 Combinational Circuits

One can build complex circuits from gates by connecting wires between gates.
However, only a small subset of such circuits are combinational. (In the theory
community, combinational circuits are known as Boolean circuits.) To guarantee
well defined functionality, strict design rules are defined regarding the connec-
tions between gates. Only circuits that abide these rules are called combinational
circuits. We now describe these rules.

The first rule is the “output-to-input” rule which says: the starting point of
every connection must be an output port and the end point must be an input
port. There is a problem with this rule; namely, how do we feed the external
inputs to input ports? We encounter a similar problem with external outputs.
Instead of setting exceptions for external inputs and outputs, perhaps the best
way to solve this problem is by defining special gates for external inputs and
outputs. We define an input gate as a gate with a single output port and no
input port. An input gate simply models an external signal that is fed to the
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circuit. Similarly, we define an output gate as a gate with a single input port
and no output port.

The second rule says: feed every input port exactly once. This means that
there must be exactly one connection to every input port of every gate. We
do not allow input ports that are not fed by some signal. The reason is that an
unconnected input may violate the digital abstraction (namely, we cannot decide
whether it feeds a zero or a one). We do not allow multiple connections to the
same input port. The reason is that different connections to the same input port
may deliver different values, and then the input value is not well defined. (Note
that we do allow the same output port to be connected to multiple inputs and
we also allow unconnected output ports.)

The third rule is the “no-cycles” rule which says: a connection is forbidden
if it closes a directed cycle. The idea is that we can model a circuit C using a
directed graph G(C). This graph is called the netlist of C. We assign a vertex
for every gate and a directed edge for every wire. The orientation of the edge
is from the output port to the input port. (Note that we can always orient the
edges thanks to the output-to-input rule). The no-cycles rule simply does not
allow directed cycles in the directed graph G(C).

Finally, we add a word about nets. Very often connections in circuits are not
depicted only by point-to-point wires. Instead, one often draws nets that form
a connection between more than two ports (see, for example, the schematic on
the right side of Fig. 1). A net is depicted as a tree whose leaves are the ports of
the net. We refer to the interior vertices of these trees as branching points. We
interpret every branching point in a drawing of a net as a trivial combinational
gate with one input port and one output port (the output port may be connected
to many input ports). In this trivial gate, the output value simply equals the
input value. Hence one should feel comfortable with branching points as long as
nets contain exactly one output port.

Question 2. Consider the circuits depicted in Figure 1. Can you explain why
these are not valid combinational circuits?

INV
INV

OR

AND

Fig. 1. Two examples of non-combinational circuits.

The definition we use for combinational circuits is syntactic; namely, we only
require that the connections between the components follow some simple rules.
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Our focus was syntax and we did not say anything about functionality. This,
of course, does not mean that we are not interested in functionality! In natural
languages (like English), the meaning of a sentence with correct syntax may
not be well defined. The syntactic definition of combinational circuits has two
main advantages: (i) It is easy to check if a circuit is indeed combinational.
(ii) The functionality of every combinational circuit is well defined. The task
of determining the output values given the input values is referred to as logical
simulation; it can performed as follows. Given the input values of the circuit,
one can scan the circuit starting from the inputs and determine all the values
of the inputs and outputs of gates. When this scan ends, the output values of
the circuit are known. The order in which the gates should be scanned is called
topological order, and this order can can be computed in linear time [Even79, Sec.
6.5]. It follows that combinational circuits implement Boolean functions just as
gates do. The difference is that functions implemented by combinational circuits
are bigger (i.e., have more inputs/outputs).

2.4 Synchronous Circuits

Synchronous circuits are built from gates and flip-flops. Obviously, not every
collection of gates and flip-flops connected by wires constitutes a “legal” syn-
chronous circuit. Perhaps the simplest way to define a synchronous circuit is by
a reduction that maps synchronous circuits to combinational circuits.

Consider a circuit C that is simply a set of gates and flip-flops connected by
wires. We assume that the first two rules of combinational circuit are satisfied:
Namely, wires connect outputs ports to inputs ports and every input port is fed
exactly once.

We are now ready to decide whether C is a synchronous circuit. The decision
is based on a reduction that replaces every flip-flop by fictive input and output
gates as follows. For every flip-flop in C, we remove the flip-flop and add an
output-gate instead of the input D of the flip-flop. Similarly, we add an input-
gate instead of the output Q of the flip-flop. Now, we say that C is a synchronous
circuit if C′ is a combinational circuit. Figure 2 depicts a circuit C and the circuit
C′ obtained by removing the flip-flops in C.

Question 3. Prove that every directed cycle in a synchronous circuit contains at
least one flip-flop. (By cycle we mean a closed walk that obeys the output-to-
input orientation.)

As in the case of combinational circuits, the definition of synchronous circuits
is syntactic. The functionality of a synchronous circuit can be modeled by a finite
state machine, defined below.

2.5 Finite State Machines

A finite state machine (also known as a finite automaton with outputs or a trans-
ducer) is an abstract machine that is described by a 6-tuple: 〈Q, q0, Σ, Δ, δ, γ〉
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clk

ff

and3

clk

ff

or

and3

or

Fig. 2. A synchronous circuit C and the corresponding combinational circuit C′ after
the flip-flops are removed.

as follows. (1) Q is a finite set of states. (2) q0 ∈ Q is an initial state, namely,
we assume that in clock cycle 0 the machine is in state q0. (3) Σ is the input
alphabet and Δ is the output alphabet. In each cycle, a symbol σ ∈ Σ is fed
as input to the machine, and the machine outputs a symbol y ∈ Δ. (4) The
transition function δ : Q × Σ → Q specifies the next state: If in cycle i the
machine is in state q and the input equals σ, then, in cycle i + 1, the state of
the machine equals δ(q, σ). (5) The output function γ : Q × Σ → Δ specifies
the output symbol as follows: when the state is q and the input is σ, then the
machine outputs the symbol γ(q, σ).

One often depicts a finite state machine using a directed graph called a
state diagram. The vertices of the state diagrams are the set of states Q. We
draw a directed edge (q′, q′′) and label the edge with a pair of symbols (σ, y), if
δ(q′, σ) = q′′ and γ(q′, σ) = y. Note that every vertex in the state diagram has
|Σ| edges emanating from it.

We now explain how the functionality of a synchronous circuit C can be
modeled by a finite state machine. Let F denote the set of flip-flops in C. For
convenience, we index the flip-flops in F , so F = {f1, . . . , fk}, where k = |F |. Let
fj(i) denote the bit that is output by flip-flop fj ∈ F during the ith clock cycle.
The set of states is Q = {0, 1}k. The state q ∈ Q during cycle i is simply the
binary string f1(i) · · · fk(i). The initial state q0 is the binary string whose jth bit
equals the value of fj(0) (recall that we assumed that each flip-flop is initialized
so that it outputs a predetermined value in cycle 0). The input alphabet Σ is
{0, 1}|I|, where I denotes the set of input gates in C. The jth bit of σ ∈ Σ is the
value of fed by the jth input gate. Similarly, the output alphabet Δ is {0, 1}|Y |,
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where Y denotes the set of output gates in C. The transition function is uniquely
determined by C since C is a synchronous circuit. Namely, given a state q ∈ Q
and an input σ ∈ Σ, we apply logical simulation to the reduced combinational
circuit C′ to determine the values fed to each flip-flop. These values are well
defined since C′ is combinational. The vector of values input to the flip-flops by
the end of clock cycle i is the state q′ ∈ Q during the next clock cycle. The same
argument determines the output function.

We note that the definition given above for a finite state machine is often
called a Mealy machine. There is another definition, called a Moore machine,
that is a slightly more restricted [HopUll79]. In a Moore machine, the domain of
the output function γ is Q rather than Q×Σ. Namely, the output is determined
by the current state, regardless of the current input symbol.

2.6 Cost and Delay

Every combinational circuit has a cost and a delay. The cost of a combinational
circuit is the sum of the costs of the gates in the circuit. We use only gates with
a constant number of inputs and outputs, and such gates have a constant cost.
Since we are not interested in the constants, we simply attach a unit cost to
every gate, and the cost of a combinational circuit equals the number of gates
in the circuit.

The delay of a combinational circuit is defined similarly to the delay of a
gate. Namely, the delay is the smallest amount of time required for the outputs
to stabilize, assuming that the inputs are stable.

Let C denote a combinational circuit. The delay of a path p in the netlist
G(C) is the sum of the delays of the gates in p.

Theorem 1. The delay of combinational circuit C is not greater than the max-
imum delay of a path in G(C).

Proof. Focus on a single gate g in C. Let d(g) denote the delay of g. If all the
inputs of g stabilize at time t, then we are guaranteed that g’s outputs are stable
at time t+d(g). Note that t+d(g) is an upper bound; in reality, g’s output may
stabilize much sooner.

We assume that all the inputs of C are stable at time t = 0. We now describe
an algorithm that labels each net with a delay t that specifies when we are
guaranteed that the signal on the net stabilizes. We do so by topologically sorting
the gates in the netlist G(C) (this is possible since G(C) is acyclic). Now, we visit
the gates according to the topological order. If g is an input gate, then we label
the net that it feeds by zero. If g is not an input gate, then the topological order
implies that all the nets that feed g have been already labeled. We compute the
maximum label tmax appearing on nets that feed g (so that we are guaranteed
that all the inputs of g stabilize by tmax). We now attach the label tmax + d(g)
to all the nets that are fed by g. The statement in the beginning of the proof
assures us that every output of g is indeed stable by time tmax + d(g).
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It is easy to show by induction on the topological order that the label attached
to nets fed by gate g equals the maximum delay of a path from an input gate to
g. Hence, the theorem follows. ��

To simplify the discussion, we attach a unit delay to every gate. With this
simplification, the delay of a circuit C is the length of the longest path in the
netlist graph G(C).

We note that a synchronous circuit also has a cost that is the sum of the gate
costs and flip-flop costs. Instead of a delay, a synchronous circuit has a minimum
clock period. The minimum clock period equals the delay of the combinational
circuit obtained after the flip-flops are removed (in practice, one should also add
the propagation delay and the hold time of the flip-flops).

2.7 Notation

A binary string with n bits is often represented by an indexed vector X [n−1 : 0].
Note that an uppercase letter is used to denote the bit-vector. In this essay we use
indexed vectors only with combinational circuits. So in a combinational circuit
X [i] always means the ith bit of the vector X [n − 1 : 0].

Notation of signals (i.e., external inputs and outputs, and interior values
output by gates) in synchronous circuits requires referring to the clock cycle.
We denote the value of a signal x during clock cycle t in a synchronous circuit
by x[t]. Note that a lowercase letter is used to denote a signal in a synchronous
circuit.

We use lowercase letter for synchronous circuits and uppercase letters for
combinational circuits. Since we deal with very simple synchronous circuits, this
distinction suffices to avoid confusion between x[i] and X [i]: The symbol x[i]
means the value of the signal x in the ith clock cycle. The symbol X [i] means
the ith bit in the vector X [n − 1 : 0].

Referring to the value of a signal (especially in a synchronous circuit) intro-
duces some confusion due to the fact that signals change all the time from zero to
one and vice-versa. Moreover, during these transitions, there is a (short) period
of time during which the value of the signal is neither zero or one. The guiding
principle is that we are interested in the stable value of a signal. In the case of a
combinational circuit this means that we wait sufficiently long after the inputs
are stable. In the case of a synchronous circuit, the functionality of flip-flops
implies that the outputs of each flip-flop are stable shortly after a clock cycle
begins and remain stable till the end of the clock cycle. Since the clock period
is sufficiently long, all other nets stabilize before the end of the clock cycle.

2.8 Representation of Numbers

Our goal is to design fast adders. For this purpose we must agree on how non-
negative integers are represented. Throughout this essay we use binary repre-
sentation. Namely, a binary string X [n− 1 : 0] ∈ {0, 1}n represents the number∑n−1

i=0 X [i] · 2i.
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In a synchronous circuit a single bit signal x[t] can be also used to repre-
sent a nonnegative integer. The ith bit equals x[i], and therefore, the number
represented by x[t] equals

∑n−1
t=0 x[t].

Although students are accustomed to binary representation, it is useful to
bear in mind that this is not the only useful representation. Negative numbers
require a special representation, the most common is known as two’s complement.
In two’s complement representation, the binary string X [n − 1 : 0] represents
the integer −2n−1 · X [n − 1] +

∑n−2
i=0 X [i] · 2i.

There are representations in which the same number may be have more than
one representation. Such representations are called redundant representations.
Interestingly, redundant representations are very useful. One important example
is carry-save representation. In carry-save representation, a nonnegative integer
is represented by two binary strings (i.e., two bits are used for each digit). Each
binary string represents an integer in binary representation, and the number
represented by two such binary strings is the sum of the numbers represented
by the two strings. An important property of carry-save representation is that
addition in carry-save representation can be computed with constant delay (this
can be done by using only full-adders). Addition with constant delay is vital for
the design of fast multipliers.

3 Definition of a Binary Adder

Everybody knows that computers compute arithmetic operations; even a calcu-
lator can do it! So it is hardly a surprise that every computer contains a hardware
device that adds numbers. We refer to such a device as an adder. Suppose we
wish to design an adder. Before we start discussing how to design an adder, it
is useful to specify or define exactly what we mean by this term.

3.1 Importance of Specification

Unfortunately, the importance of a formal specification is not immediately un-
derstood by many students. This is especially true when it comes to seemingly
obvious tasks such as addition. However, there are a few issues that the specifi-
cation of an adder must address.

Representation: How are addends represented? The designer must know how
numbers are represented. For example, an adder of numbers represented
in unary representation is completely different than an adder of numbers
represented in binary representation. The issue of representation is much
more important when we consider representations of signed numbers (e.g.,
two’s complement and one’s complement) or redundant representations (e.g.,
carry-save representation).
Another important issue is how to represent the computed sum? After all,
the addends already represent the sum, but this is usually not satisfactory.
A reasonable and useful assumption is to require the same representation
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for the addends and the sum (i.e., binary representation in our case). The
main advantage of this assumption is that one could later use the sum as an
addend for subsequent additions.
In this essay we consider only binary representation.

Model: How are the inputs fed to the circuit and how is the output obtained?
We consider two extremes: a combinational circuit and a synchronous circuit.
In a combinational circuit, we assume that there is a dedicated port for every
bit of the addends and the sum. For example, if we are adding two 32-bit
numbers, then there are 32 × 3 ports; 32 × 2 ports are input ports and 32
ports are output ports. (We are ignoring in this example the carry-in and
the carry-out ports.)
In a synchronous circuit, we consider the bit-serial model in which there are
exactly two input ports and one output port. Namely, there are exactly three
ports regardless of the length of the addends. The synchronous circuit is very
easy to design and will serve as a starting point for combinational designs.
In Section 3.3 we present a bit-serial adder.

We are now ready to specify (or define) a combinational binary adder and a
serial binary adder. We specify the combinational adder first, but design a serial
adder first. The reason is that we will use the implementation of the serial adder
to design a simple combinational adder.

3.2 Combinational Adder

Definition 2. A combinational binary adder with input length n is a combina-
tional circuit specified as follows.

Input: A[n − 1 : 0], B[n − 1 : 0] ∈ {0, 1}n.
Output: S[n − 1 : 0] ∈ {0, 1}n and C[n] ∈ {0, 1}.
Functionality:

C[n] · 2n +
n−1∑
i=0

S[i] · 2i =
n−1∑
i=0

A[i] · 2i +
n−1∑
i=0

B[i] · 2i. (1)

We denote a combinational binary adder with input length n by adder(n). The
inputs A[n−1 : 0] and B[n−1 : 0] are the binary representations of the addends.
Often an additional input C[0], called the carry-in bit, is used. To simplify the
presentation we omit this bit at this stage (we return to it in Section 7.1). The
output S[n − 1 : 0] is the binary representation of the sum modulo 2n. The
output C[n] is called the carry-out bit and is set to 1 if the sum is at least 2n.

Question 4. Verify that the functionality of adder(n) is well defined. Show that,
for every A[n − 1 : 0] and B[n − 1 : 0] there exist unique S[n − 1 : 0] and C[n]
that satisfy Equation 1.

Hint: Show that the set of integers that can be represented by sums A[n−1 :
0] + B[n − 1 : 0] is contained in the set of integers that can be represented by
sums S[n − 1 : 0] + 2n · C[n].
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There are many ways to implement an adder(n). Our goal is to present a
design of an adder(n) with optimal asymptotic delay and cost. In Sec. 5 we
prove that every design of an adder(n) must have at least logarithmic delay
and linear cost.

3.3 Bit-Serial Adder

We now define a synchronous adder that has two inputs and a single output.

Definition 3. A bit-serial binary adder is a synchronous circuit specified as
follows.

Input ports: a, b ∈ {0, 1}.
Output ports: s ∈ {0, 1}.
Functionality: For every clock cycle n ≥ 0,

n∑
i=0

s[i] · 2i =
n∑

i=0

(a[i] + b[i]) · 2i (mod 2n). (2)

We refer to a bit-serial binary adder by s-adder. One can easily see the relation
between a[i] (e.g., the bit input in clock cycle i via port a) and A[i] (e.g., the
ith bit of the addend A). Note the lack of a carry-out in the specification of a
s-adder.

4 Trivial Designs

In this section we present trivial designs for an s-adder and an adder(n). The
combinational adder is obtained from the synchronous one by applying a time-
space transformation.

4.1 A Bit-Serial Adder

In this section we present a design of a bit-serial adder. The design performs
addition in the same way we are taught to add in school (i.e., from the least
significant digit to the most significant digit). Figure 3 depicts a design that
uses one flip-flop and one full-adder. The output of the flip-flop that is input
to the full-adder is called the carry-in signal and is denoted by cin. The carry
output of the full-adder is input to the flip-flop, and is called the carry-out signal.
It is denoted by cout. We ignore the issue of initialization and assume that, in
clock cycle zero, cin[0] = 0.

We now present a correctness proof of the s-adder design. The proof is by
induction, but is not totally straightforward. (Definitely not for undergraduate
hardware design students!) The problem is that we need to strengthen Eq. 2 (we
point out the difficulty within the proof). Another reason to insist on a complete
proof is that, for most students, this is the first time they prove the correctness
of the addition algorithm taught in school.
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Fig. 3. A schematic of a serial adder.

Claim 1. The circuit depicted in Fig. 3 is a correct implementation of a s-adder.

Proof. We prove that the circuit satisfies Eq. 2. The proof is by induction on
the clock cycle. The induction basis, for the clock cycle zero (i.e., n = 0), is easy
to prove. In clock cycle zero, the inputs are a[0] and b[0]. In addition cin[0] = 0.
By the definition of a full-adder, the output s[0] equals xor(a[0], b[0], cin[0]). It
follows that s[0] = mod(a[0] + b[0], 2), as required.

We now try to prove the induction step for n + 1. Surprisingly, we are stuck.
If we try to apply the induction hypothesis to the first n cycles, then we cannot
claim anything about cin[n + 1]. (We do know that cin[n + 1] = cout[n], but
Eq. 2 does not tell us anything about the value of cout[n].) On the other hand
we cannot apply the induction hypothesis to the last n cycles (by decreasing the
indexes of clock cycles by one) because cin[1] might equal 1.

The way to overcome this difficulty is to strengthen the statement we are
trying to prove. Instead of Eq. 2, we prove the following stronger statement: For
every clock cycle n ≥ 0,

2n+1 · cout[n] +
n∑

i=0

s[i] · 2i =
n∑

i=0

(a[i] + b[i]) · 2i. (3)

We prove Equation 3 by induction. When n = 0, Equation 3 follows from
the functionality of a full-adder and the assumption that cin[0] = 0. So now we
turn again to the induction step, namely, we prove that Eq. 3 holds for n + 1.

The functionality of a full-adder states that

2 · cout[n + 1] + s[n + 1] = a[n + 1] + b[n + 1] + cin[n + 1]. (4)

We multiply both sides of Eq. 4 by 2n+1 and add it to Eq. 3 to obtain

2n+2 ·cout[n+1]+2n+1 ·cout[n]+
n+1∑
i=0

s[i] ·2i = 2n+1 ·cin[n+1]+
n+1∑
i=0

(a[i]+b[i]) ·2i.

(5)
The functionality of the flip-flop implies that cout[n] = cin[n + 1], and hence,
Eq. 3 holds also for n + 1, and the claim follows. ��
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4.2 Ripple-Carry Adder

In this section we present a design of a combinational adder adder(n). The
design we present is called a ripple-carry adder. We abbreviate and refer to a
ripple-carry adder for binary numbers of length n as rca(n). Although designing
an rca(n) from scratch is easy, we obtain it by applying a transformation, called
a time-space transformation, to the bit-serial adder.

Ever since Ami Litman and my father introduced me to retiming [LeiSaxe81,
LeiSaxe91, EvenLitman91, EvenLitman94], I thought it is best to describe de-
signs by functionality preserving transformations. Namely, instead of obtaining a
new design from scratch, obtain it by transforming a known design. Correctness
of the new design follows immediately if the transformation preserves function-
ality. In this way a simple design evolves into a sophisticated design with much
better performance. Students are rarely exposed to this concept, so I chose to
present the ripple-carry adder as the outcome of a time-space transformation
applied to the serial adder.

Time-space transformations. We apply a transformation called a time-space
transformation. This is a transformation that maps a directed graph (possi-
bly with cycles) to an acyclic directed graph. In the language of circuits, this
transformation maps synchronous circuits to combinational circuits.

Given a synchronous circuit C, construct a directed multi-graph G = (V, E)
with non-negative integer weights w(e) defined over the edges as follows. This
graph is called the communication graph of C [LeiSaxe91, EvenLitman94]. The
vertices are the combinational gates in C (including branching points). An edge
(u, v) in a communication graph models a p path in the netlist, all the interior
nodes of which correspond to flip-flops. Namely, we draw an edge from u to v
if there is a path in C from an output of u to an input v that traverses only
flip-flops. Note that a direct wire from u to v also counts as a path with zero
flip-flops. The weight of the edge (u, v) is set to the number of flip-flops along
the path. Note that there might be several paths from u to v, each traversing
a different number of flip-flops. For each such path, we add a parallel edge
with the correct weight. Finally, recall that branching points are considered to
be combinational gates, so such a path may not traverse a branching point.
In Figure 4 a synchronous circuit and its communication graph are depicted.
Following [LeiSaxe81], we depict the weight of an edge by segments across an
edge (e.g., two segments mean that the weight is two).

The weight of a path in the communication graph is the sum of the edge
weights along the path. The following claim follows from the definition of a
synchronous circuit.

Claim 2. The weight of every cycle in the communication graph of a synchronous
circuit is greater than zero.

Question 5. Prove Claim 2.

Let n denote a parameter that specifies the number cycles used in the time-
space transformation. The time-space transformation of a communication graph
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ffffff ff

Fig. 4. A synchronous circuits and the corresponding communication graph (the gates
are xor gates).

G = (V, E) is the directed graph stn(G) = (V × {0, . . . , n − 1}, E′) defined as
follows. The vertex set is the Cartesian product of V and {0, . . . , n− 1}. Vertex
(v, i) is a copy of v that corresponds to clock cycle i. There is an edge from
(u, i) to (v, j) if: (i) (u, v) ∈ E, and (ii) w(u, v) = j − i. The edge ((u, i), (v, j))
corresponds to the data transmitted from u to v in clock cycle i. Since there
are w(u, v) flip-flops along the path, the data arrives to v only in clock cycle
j = i + w(u, v).

Since the weight of every directed cycle in G is greater than zero, it follows
that stn(G) is acyclic. We now build a combinational circuit Cn whose commu-
nication graph is stn(G). This is done by placing a gate of type v for each vertex
(v, i). The connections use the same ports as they do in C.

There is a boundary problem that we should address. Namely, what feeds
input ports of vertices (v, j) that “should” be fed by a vertex (u, i) with a
negative index i? We encounter a similar problem with output ports of a vertex
(u, i) that should feed a vertex (v, j) with an index j ≥ n. We solve this problem
by adding input gates that feed vertices (v, j) where j < w(u, v). Similarly, we
add output gates that are fed by vertices (u, i) where i + w(u, v) > n.

We are now ready to apply the time-space transformation to the bit-serial
adder. We apply it for n clock cycles. The input gate a has now n instances that
feed the signals A[0], . . . , A[n− 1]. The same holds for the other input b and the
output s. The full-adder has now n instances denoted by fa0, . . . , fan−1. We are
now ready to describe the connections. Since the input a feeds the full-adder in
the bit-serial adder, we now use input A[i] to feed the full-adder fai. Similarly,
the input B[i] feeds the full-adder fai. The carry-out signal cout of the full-adder
in the bit-serial adder is connected via a flip-flop to one of the inputs of the full-
adder. Hence, we connect the carry-out port of full-adder fai to one of the inputs
of fai+1. Finally, the output S[i] is fed by the sum output of full-adder fai. Note
that full-adder fa0 is also fed by a “new” input gate that carries the carry-in
signal C[0]. The carry-in signal is the initial state of the serial adder. The full-
adder fan−1 feeds a “new” output gate with the carry-out signal C[n]. Figure 5
depicts the resulting combinational circuit known as a ripple-carry adder. The
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netlist of the ripple-carry adder is simple and regular, and therefore, one can
easily see that the outputs of fai depend only on the inputs A[i : 0] and B[i : 0].

sc
fa0

S[0]

A[0]B[0]

sc
fa1

A[1]B[1]

C[2] S[1]C[n − 2]

sc
fan−2

sc
fan−1

S[n − 2]C[n − 1]S[n − 1]C[n] C[1]

A[n − 2]B[n − 2]A[n − 1]B[n − 1]

C[0]

Fig. 5. A ripple-carry adder.

The main advantage of using the time-space transformation is that this trans-
formation preserves functionality. Namely, there is a value-preserving mapping
between the value of a signal x[i] in clock cycle i in the synchronous circuit
and the value of the corresponding signal in the combinational circuit. The main
consequence of preserving functionality is that the correctness of rca(n) follows.

Question 6. Write a direct proof of the correctness of a ripple-carry adder rca(n).
(That is, do not rely on the time-space transformation and the correctness of
the bit-serial adder.)

4.3 Cost and Delay

The bit-serial adder consists of a single full-adder and a single bit flip-flop. It
follows that the cost of the bit-serial adder is constant. The addition of n-bit
numbers requires n clock cycles.

The ripple-carry adder rca(n) consists of n full-adders. Hence, its cost is
linear in n. The delay is also linear since the path from A[0] to S[n−1] traverses
all the n full-adders.

5 Lower Bounds

We saw that rca(n) has a linear cost and a linear delay. Before we look for
better adder designs, we address the question of whether there exist cheaper or
faster adders. For this purpose we need to prove lower bounds.

Lower bounds are rather mysterious to many students. One reason is math-
ematical in nature; students are not used to arguing about unknown abstract
objects. The only lower bound that they probably encountered so far is the lower
bound on the number of comparisons needed for sorting. Another reason is that
they have been noticing a continuous improvement in computer performance
and an ongoing reduction in computer costs. So many students are under the
impression that there is no limit to faster and cheaper circuits. This impression
might be even “well founded” if they heard about “Moore’s Law”. Finally, they
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are accustomed to thinking that better ways are awaiting the ingenious or lucky
inventor.

We first state the lower bounds for the delay and cost of binary adders.

Theorem 2. Assume that the number of inputs of every combinational gate
is bounded by c. Then, for every combinational circuit G that implements an
adder(n), the following hold: c(G) ≥ n/c and d(G) ≥ logc n.

How does one prove this theorem? The main difficulty is that we are trying
prove something about an unknown circuit. We have no idea whether there exist
better ways to add. Perhaps some strange yet very simple Boolean function
of certain bits of the addends can help us compute the sum faster or cheaper?
Instead of trying to consider all possible methods for designing adders, we rely on
the simplest properties that every adder must have. In fact, the proof is based
on topological properties common to every adder. There are two topological
properties that we use: (i) There must be a path from every input to the output
S[n − 1]. (ii) The number of inputs of every combinational gate is bounded by
c. Hence the proof of Theorem 2 reveals an inherent limitation of combinational
circuits rather than incompetence of designers.

Question 7. Prove Theorem 2.
Hint: Show that the output bit S[n] depends on all the inputs. This means

that one cannot determine the value of S[n] without knowing the values of all
the input bits. Prove that in every combinational circuit in which the output
depends on all the inputs the delay is at least logarithmic and the cost is at least
linear in the number of inputs. Rely on the fact that the number of inputs of
each gate is at most c.

Returning the ripple-carry adder rca(n), we see that its cost is optimal (upto
a constant). However, its delay is linear. The lower bound is logarithmic, so much
faster adders might exist. We point out that, in commercial microprocessors, 32-
bit numbers are easily added within a single clock cycle. (In fact, in some floating
point units numbers over 100 bits long are added within a clock cycle.) Clock
periods in contemporary microprocessors are rather short; they are shorter than
10 times the delay of a full-adder. This means that even the addition of 32-bit
numbers within one clock cycle requires faster adders.

6 The Adder of Ladner and Fischer

In this section we present an adder design whose delay and cost are asymptoti-
cally optimal (i.e., logarithmic delay and linear cost).

6.1 Motivation

Let us return to the bit-serial adder. The bit-serial adder is fed one bit of each
addend in each clock cycle. Consider the finite-state diagram of the bit-serial
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adder depicted in Fig. 6. In this diagram there are two states: 0 and 1 (the state
is simply the value stored in the flip-flop, namely, the carry-bit from the previous
position). The computation of the bit-serial adder can be described as a walk
in this diagram that starts in the initial state 0. If we know the sequence of the
states in this walk, then we can easily compute the sum bits. The reason for
this is that the output from state q ∈ {0, 1} when fed inputs A[i] and B[i] is
xor(q, A[i], B[i]).

0 1

00/0

01/1

10/1

10/0

01/0

11/1

00/1

11/0

Fig. 6. The state diagram of the bit-serial adder.

We now consider the goal of parallelizing the bit-serial adder. By paralleling
we mean the following. We know how to compute the sum bits if the addends
are input one bit at a time. Could we compute the sum faster if we knew all
the bits of the addends from the beginning? Another way to state this question
is to ask whether we could quickly reconstruct the sequence of states that are
traversed.

Perhaps it is easier to explain our goal if we consider a state-diagram with
several states (rather than just two states). Let σi ∈ Σ denote the symbol input
in cycle i. We assume that in cycle zero the machine is in state q0. When fed
by the input sequence σ0, . . . , σn−1, the machine walks through the sequence
of states q0, . . . , qn defined by transition function δ, as follows: qi+1 = δ(qi, σi).
The output sequence y0, y1, . . . , yn−1 is defined by output function γ, as follows:
yi = γ(qi, σi). We can interpret the inputs as “driving instructions” in the state
diagram. Namely, in each cycle, the inputs instruct us how to proceed in the
walk (i.e., “turn left”, “turn right”, or “keep straight”). Now, we wish to quickly
reconstruct the walk from the sequence of n instructions.

Suppose we try to split this task among n players. The ith player is given
the input symbol σi and performs some computation based on σi. After this,
the players meet, and try to quickly glue together their pieces. Each player is
confronted with the problem of simplifying the task of gluing. The main obstacle
is that each player does not know the state qi of the machine when the input
symbol σi is input. At first, it seems that knowing qi is vital if, for example,
players i and i + 1 want to combine forces.

Ladner and Fisher proposed the following approach. Each player i computes
(or, more precisely chooses) a restricted transition function δi : S → S, defined
by δi(q) = δ(q, σi). One can obtain a “graph” of δi if one considers only the edges
in the state diagram that are labeled with the input symbol σi. By definition,
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if the initial state is q0, then q1 = δ0(q0). In general, qi = δi−1(qi−1), and
hence, qi = δi−1(δi−2(· · · (δ0(q0)) · · · ). It follows that player i is satisfied if she
computes the composition of the functions δi−1, . . . , δ0. Note that the function
δi is determined by the input symbol σi, and the functions δi are selected from
a fixed collection of |Σ| functions.

Before we proceed, there is a somewhat confusing issue that we try to clarify.
We usually think of an input σi as a parameter that is given to a function
(say, f), and the goal is to evaluate f(σ). Here, the input σi is used to select
a function δi. We do not evaluate the function δi; instead, we compose it with
other functions.

We denote the composition of two function f and g by f ◦ g. Note that
(f ◦ g)(q) �= f(g(q)). Namely, g is applied first, and f is applied second.

We denote the composition of the functions δi, . . . , δ0 by the function πi.
Namely, π0 = δ0, and πi+1(q) = δi+1(πi(q)). Assume that, given representa-
tions of two functions f and g, the representation of the composition f ◦ g can
be computed in constant time. This implies that the function πn−1 can be, of
course, computed with linear delay. The goal in parallelizing the computation is
to compute πn−1 with logarithmic delay. Moreover, we wish to compute all the
functions π0, . . . , πn−1 with logarithmic delay and with overall linear cost.

Recall that our goal is to compute the output sequence rather than the se-
quence of states traversed by the state machine. Obviously, if we compute the
walk q0, . . . , qn−1, then we can easily compute the output sequence simply by
yi = γ(qi, σi). Hence, each output symbol yi can be computed with constant
delay and cost after qi is computed. This means that we have reduced the prob-
lem of parallelizing the computation of a finite state machine to the problem of
parallelizing the computation of compositions of functions.

Remember that our goal is to design an optimal adder. So the finite state
machine we are interested in is the bit-serial adder. There are four possible input
symbols corresponding to the values of the bits a[i] and b[i]. The definition of full-
adder (and the state diagram), imply that the function δi satisfies the following
condition for q ∈ {0, 1}:

δi(q) =

{
0 if q + a[i] + b[i] < 2
1 if q + a[i] + b[i] ≥ 2.

=

⎧⎪⎨⎪⎩
0 if a[i] + b[i] = 0
q if a[i] + b[i] = 1.
1 if a[i] + b[i] = 2.

(6)

In the literature the sum a[i] + b[i] is often represented using the carry
“kill/propagate/generate” signals [CLR90]. This terminology is justified by the
following explanation.

– When a[i]+b[i] = 0, it is called “kill”, because the carry-out is zero. In Eq. 6,
we see that when a[i] + b[i] = 0, the value of the function δi is always zero.
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– When a[i] + b[i] = 1, it is called “propagate”, because the carry-out equals
the carry-in. In Eq. 6, we see that when a[i] + b[i] = 1, the function δi is the
identity function.

– When a[i] + b[i] = 2, it is called “generate”, because the carry-out is one. In
Eq. 6, we see that when a[i] + b[i] = 2, the value of the function δi is always
one.

From this discussion, it follows that the “kill/propagate/generate” jargon
(also known as k, p, g) is simply a representation of a[i] + b[i]. We prefer to
abandon this tradition and use a different notation described below.

Equation 6 implies that, in a bit-serial adder, δi can be one of three functions:
the zero function (i.e., value is always zero), the one function (i.e., value is always
one), and the identity function (i.e., value equals the parameter). We denote the
zero function by f0, the one function by f1, and the identity function by fid.

The fact that these three functions are closed under composition can be easily
verified since for every x ∈ {0, id, 1}:

f0 ◦ fx = f0

fid ◦ fx = fx

f1 ◦ fx = f1.

Finally, we point out that the “multiplication” table presented for the op-
erator defined over the alphabet {k, p, g} is simply the table of composing the
functions f0, fid, f1 (see, for example, [CLR90]).

6.2 Associativity of Composition

Before we continue, we point out an important property of compositions of func-
tions whose domain and range are identical (e.g., Q is both the domain and the
range of all the functions δi).

Consider a set Q and the set F of all functions from Q to Q. An operator
is a function 
 : F × F → F . (One could define operators 
 : A × A → A with
respect to any set A. Here we need only operators with respect to F .) Since 
 is
a dyadic function, we denote by f 
 g the image of 
 when applied to f and g.

Composition of functions is perhaps the most natural operator. Given two
functions, f, g ∈ F , the composition of f and g is the function h defined by
h(q) = f(g(q)). We denote the composition of f and g by f ◦ g.

Definition 4. An operator 
 : F × F → F is associative if, for every three
functions f, g, h ∈ F , the following holds:

(f 
 g) 
 h = f 
 (g 
 h).

We note that associativity is usually defined for dyadic functions, namely,
f(a, f(b, c)) = f(f(a, b), c). Here, we are interested in operators (i.e., functions
of functions), so we consider associativity of operators. Of course, associativity
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means the same in both cases, and one should not be confused by the fact that
the value of an operator is a function.

We wish to prove that composition is an associative operator. Although this
is an easy claim, it is often hard to convince the students that it is true. One
could prove this by a reduction to multiplication of zero-one matrices. Instead,
we provide a “proof by diagram”.

q0 q1 q2 q3
h g f

q0 q3q2

q0 q3

f ◦ (g ◦ h)

q1
f ◦ g

(f ◦ g) ◦ h

h

fg ◦ h

Fig. 7. Composition of functions is associative.

Claim 3. Composition of functions is associative.

Proof. Consider three functions f, g, h ∈ F and an element q0 ∈ Q. Let q1 =
h(q0), q2 = g(q1), and q3 = f(q2). In Figure 7 we depict the compositions (f◦g)◦h
and f ◦ (g ◦ h). In the second line of the figure we depict the following.

((f ◦ g) ◦ h)(q0) = (f ◦ g)(h(q0))
= f(g(h(q0))).

In third line of the figure we depict the following.

f ◦ (g ◦ h)(q0) = f((g ◦ h)(q0))
= f(g(h(q0))).

Hence, the claim follows. ��
The associativity of an operator allows us to write expressions without paren-

thesis. Namely, f1 ◦ f2 ◦ · · · ◦ fn is well defined.
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Question 8. Let Q = {0, 1}. Find an operator in F that is not associative.

Interestingly, in most textbooks that describe parallel-prefix adders, an as-
sociative dyadic function is defined over the alphabet {k, p, g} (or over its repre-
sentation by the two bits p and g). This associative function is usually presented
without any justification or motivation. As mentioned at the end of Sec. 6.1,
this function is simply the composition of f0, fid, f1. The associativity of this
operator is usually presented as a special property of addition. In this section we
showed this is not the case. The special property of addition is that the functions
δ(·, σ) are closed under composition. Associativity, on the other hand, is simply
the associativity of composition.

6.3 The Parallel Prefix Problem

In Section 6.1, we reduced the problem of designing a fast adder to the problem of
computing compositions of functions. In Section 6.2, we showed that composition
of functions is an associative operator. This motivates the definition of the prefix
problem.

Definition 5. Consider a set A and an associative operator 
 : A × A → A.
The prefix problem is defined as follows.

Input: δ0, . . . , δn−1 ∈ A.
Output: π0, . . . , πn−1 ∈ A defined by π0 = δ0 and πi = δi
· · ·
δ0, for 0 < i < n.

(Note that πi+1 = δi+1 
 πi.)

Assume that we have picked a (binary) representation for elements in A.
Moreover, assume that we have an implementation of the associative operator 

with respect to this implementation. Namely, a 
-gate is a combinational gate
that when fed two representations of elements f, g ∈ A, outputs a representation
of f 
 g. Our goal now is to design a fast circuit for solving the prefix problem
using 
-gates. Namely, our goal is to design a parallel prefix circuit.

Note that the operator 
 need not be commutative, so the inputs of the 
-
gate cannot be interchanged. This means that there is a difference between the
left input and the right input of a 
-gate.

6.4 The Parallel Prefix Circuit

We are now ready to describe a combinational circuit for the prefix problem. We
will use only one building block, namely, a 
-gate. We assume that the cost and
the delay of a 
-gate are constant (i.e., do not depend on n).

We begin by considering two circuits; one with optimal cost and the second
with optimal delay. We then present a circuit with optimal cost and delay.

Linear cost but linear delay. Figure 8 depicts a circuit for the prefix problem
with linear cost. The circuit contains (n − 1) copies of 
-gates, but its delay is
also linear. In fact, this circuit is very similar to the ripple carry adder.
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◦-gate

δn−1

πn−1

◦-gate

δn−2

πn−2

◦-gate

δ2

π1

◦-gate

δ1 δ0

π0

Fig. 8. A prefix computation circuit with linear delay.

Logarithmic delay but quadratic cost. The ith output πi can be computed by
circuit with the topology of a balanced binary tree, where the inputs are fed
from the leaves, a 
-gate is placed in each node, and πi is output by the root.
The circuit contains (i−1) copies of 
-gates and its delay is logarithmic in i. We
could construct a separate tree for each πi to obtain n circuits with logarithmic
delay but quadratic cost.

Our goal now is to design a circuit with logarithmic delay and linear cost.
Intuitively, the design based on n separate trees is wasteful because the same
computations are repeated in different trees. Hence, we need to find an efficient
way to “combine” the trees so that computations are not repeated.

Parallel prefix computation. We now present a circuit called ppc(n) for the
prefix problem. The design we present is a recursive design. For simplicity, we
assume that n is a power of 2. The design for n = 2 simply outputs π0 ← δ0

and π1 ← δ1 
δ0. The recursion step is depicted in Figure 9. Adjacent inputs are
paired and fed to a 
-gate. The n/2 outputs of the 
-gates are fed to a ppc(n/2)
circuit. The outputs π′

0, . . . , π
′
n/2−1 of the ppc(n/2) circuit are directly connected

to the odd indexed outputs, namely, π2i+1 ← π′
i. Observe that wires carrying the

inputs with even indexes are drawn (or routed) over the ppc(n/2) box; these
“even indexed” wires are not part of the ppc(n/2) design. The even indexed
outputs (for i > 0) are obtained as follows: π2i ← δ2i 
 π′

i−1.

6.5 Correctness

Claim 4. The design depicted in Fig. 9 is correct.

Proof. The proof of the claim is by induction. The induction basis holds trivially
for n = 2. We now prove the induction step. Consider the ppc(n/2) used in a
ppc(n). Let δ′i and π′

i denote the inputs and outputs of the ppc(n/2), respec-
tively. The ith input δ′[i] equals δ2i+1 
 δ2i. By associativity and the induction
hypothesis, the ith output π′

i satisfies:

π′
i = δ′i 
 · · · δ′0
= (δ2i+1 
 δ2i) 
 · · · 
 (δ1 
 δ0)
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�-gate�-gate�-gate

�-gate�-gate�-gate�-gate

π0

δ0δ1δ2δ3δn−4δn−3δn−2δn−1

π1π2π3πn−4πn−3πn−2πn−1

δ′n/2−1 δ′n/2−2 δ′1 δ′0

π′
n/2−1 π′

n/2−2 π′
1 π′

0
ppc(n/2)

Fig. 9. A recursive design of ppc(n). (The wires that pass over the ppc(n/2) box carry
the even indexed inputs δ0, δ2, . . . , δn−2. These signals are not part of the ppc(n/2)
circuit. The wires are drawn in this fashion only to simplify the drawing. )

It follows that the output π2i+1 equals the composition δ2i+1
· · ·
δ0, as required.
Hence, the odd indexed outputs π1, π3, . . . , πn−1 are correct.

Finally, output in position 2i equals δ2i 
 π′
i−1 = δ2i 
 π2i−1 = δ2i 
 · · · 
 δ0. It

follows that the even indexed outputs are also correct, and the claim follows. ��

6.6 Delay and Cost Analysis

The delay of the ppc(n) circuit satisfies the following recurrence:

d(ppc(n)) =

{
d(
-gate) if n = 2
d(ppc(n/2)) + 2 · d(
-gate) otherwise.

If follows that

d(ppc(n)) = (2 log n − 1) · d(
-gate).

The cost of the ppc(n) circuit satisfies the following recurrence:

c(ppc(n)) =

{
c(
-gate) if n = 2
c(ppc(n/2)) + (n − 1) · c(
-gate) otherwise.
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Let n = 2k, it follows that

c(ppc(n)) =
k∑

i=2

(2i − 1) · c(
-gate) + c(
-gate)

= (2n − log n − 1) · c(
-gate).

We conclude with the following corollary.

Corollary 1. If the delay and cost of an 
-gate is constant, then

d(ppc(n)) = Θ(log n)
c(ppc(n)) = Θ(n).

Question 9. This question deals with the implementation of ◦-gates for general
finite state machines. (Recall that a ◦-gate implements composition of restricted
transition functions.)

1. Suggest a representation (using bits) for the functions δi.
2. Design a ◦-gate with respect to your representation, namely, explain how to

compute composition of functions in this representation.
3. What is the size and delay of the ◦-circuit with this representation? How

does it depend on Q and Σ?

6.7 The Parallel-Prefix Adder

So far, the description of the parallel-prefix adder has been rather abstract. We
started with the state diagram of the serial adder, attached a function δi to each
input symbol σi, and computed the composition of the functions. In essence,
this leads to a fast and cheap adder design. In this section we present a con-
crete design based on this construction. For this design we choose a specific
representation of the functions f0, f1, fid. This representation appears in Ladner
and Fischer [LadnerFischer80], and in many subsequent descriptions (see [Bren-
tKung82, ErceLang04, MüllerPaul00]). To facilitate comparison with these de-
scriptions, we follow the notation of [BrentKung82]. In Fig. 10, a block diagram
of this parallel-prefix adder is presented.

The carry-generate and carry-propagate signals. We decide to represent the func-
tions δi ∈ {f0, f1, fid} by two bits: gi - the carry-generate signal, and pi - the
carry propagate signal. Recall that the ith input symbol σi is the pair of bits
A[i], B[i]. We simply use the binary representation of A[i]+B[i]. The binary rep-
resentation of the sum A[i]+B[i] requires two bits: one for units and the second
for twos. We denote the units bit by pi and the twos bit by gi. The computation
of pi and gi is done by a half-adder that is input A[i] and B[i].

Implementation of the ◦-gate. Now that we have selected a representation of the
functions f0, f1, fid, we need to design the ◦-gate that implements composition.
This is an easy task: if (g, p) = (g1, p1) ◦ (g2, p2), then g = g1 or (p1 and g2)
and p = p1 and p2.
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p1

S[1]

p2

S[2]

p0p1pn−2pn−1 g0g1gn−2gn−1

pn−1

S[n − 1]C[n] S[0]

p0

G0G1Gn−2Gn−1

xorxorxor

A[0]B[0]

sc
ha

A[1]B[1]

sc
haha

A[n − 2]B[n − 2]A[n − 1]B[n − 1]

ppc(n)

sc
ha

sc

Fig. 10. A parallel-prefix adder. (ha denotes a half-adder and the ppc(n) circuit con-
sists of ◦-gates described below.)

Putting things together. The pairs of signals (g0, p0), (g1, p1), . . . (gn−1, pn−1) are
input to a ppc(n) circuit that contains only ◦-gates. The output of the ppc(n)
is a representation of the functions πi, for 0 ≤ i < n. We denote the pair of bits
used to represent πi by (Gi, Pi). We do not need the outputs P0, . . . , Pn−1, so
we only depict the outputs G0, . . . , Gn−1.

Recall that state qi+1 equals πi(q0). Since q0 = 0, it follows that πi(q0) = 1
if and only if πi = f1, namely, if and only if Gi = 1. Hence qi+1 = Gi.

We are now ready to compute the sum bits: Since S[0] = xor(A[0], B[0]), we
may reuse p[0], and output S[0] = p[0]. For 0 < i < n, S[i] = xor(A[i], B[i], qi) =
xor(pi, Gi−1). Finally, for those interested in the carry-out bit C[n], simply note
that C[n] = qn = Gn−1.

Question 10. Compute the number of gates of each type in the parallel prefix
adder presented in this chapter as a function of n.

In fact it is possible to save some hardware by using degenerate ◦-gates when
only the carry-generate bit of the output of a ◦-gate is used. This case occurs for
the n/2− 1 ◦-gates whose outputs only feed outputs of the ppc(n) circuit. More
generally, one could define such degenerate ◦-gates recursively, as follows. A ◦-
gate is degenerate if: (i) Its output feeds only an output of the ppc(n) circuit,
or (ii) Its output is connected only to ports that are the right input ports of
degenerate ◦-gates or an output port of the ppc(n)-circuit.

Question 11. How many degenerate ◦-gates are there?

7 Further Topics

In this section we discuss various topics related to adders.



On Teaching Fast Adder Designs: Revisiting Ladner & Fischer 341

7.1 The Carry-In Bit

The role of the carry-in bit is somewhat mysterious at this stage. To my knowl-
edge, no programming language contains an instruction that uses a carry-in bit.
For example, we write S := A + B, and we do not have an extra single bit
variable for the carry-in. So why is the carry-in included in the specification of
an adder?

There are two justifications for the carry-in bit. The first justification is that
one can build adders of numbers of length k + � by serially connecting an adder
of length k and an adder of length �. The carry-out output of the adder of the
lower bits is fed to the carry-in inputs of the adder of the higher bits.

A more important justification for the carry-in bit is that it is needed for a
constant time reduction from subtraction of two’s complement numbers to binary
addition. A definition of the two’s complement representation and a proof of the
reduction appear in [MüllerPaul00, Even04].

In this essay, we do not define two’s complement representation or deal with
subtraction. However, most hardware design courses deal with these issues, and
hence, they need the carry-in input. The carry-in input creates very little com-
plications, so we do not mind considering it, even if its usefulness is not clear at
this point.

Formally, the carry-in bit is part of the input and is denoted by C[0]. The
goal is to compute A + B + C[0].

There are three main ways to compute A + B + C[0] within the framework
of this essay:

1. The carry-in bit C[0] can be viewed as a setting of the initial state q0.
Namely, q0 = C[0]. This change has two effects on the parallel-prefix adder
design: (i) The sum bit S[0] equals γ(q0, σ0). Hence S[0] = xor(C[0], p[0]).
(ii) For i > 0, the sum bit S[i] equals xor(πi−1(q0), pi). Hence S[i] can be
computed from 4 bits: pi, C[0], and Gi−1, Pi−1. The disadvantage of this
solution is that we need an additional gate for the computation of each sum
bit. The advantage of this solution is that it suggests a simple way to design
a compound adder (see Sec. 7.2).

2. The carry-in bit can be viewed as two additional bits of inputs, namely
A[−1] = B[−1] = C[0], and then C[0] = 2−1 · (A[−1] + B[−1]). This means
that we reduce the task of computing A + B + C[0] to the task of adding
numbers that are longer by one bit. The disadvantage of this solution is
that the ppc(n) design is particularly suited for n that is a power of two.
Increasing n (that is a power of two) by one incurs a high overhead in cost.

3. Use δ′0 instead of δ0, where δ′0 is defined as follows:

δ′0
�=

{
f0 if A[0] + B[0] + C[0] < 2
f1 if A[0] + B[0] + C[0] ≥ 2.

This setting avoids the assignment δ0 = fid, but still satisfies: δ′0(q0) = q1.
Hence, the ppc(n) circuit outputs the correct functions even when δ0 is re-
placed by δ′0. The sum bit S[0] is computed directly by xor(A[0], B[0], C[0]).
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Note that the implementation simply replaces the half-adder used to com-
pute p0 and g0 by a full-adder that is also input C[0]. Hence, the overhead
for dealing with the carry-in bit C[0] is constant.

7.2 Compound Adder

A compound adder is an adder that computes both A + B and A + B + 1.
Compound adders are used in floating point units to implement rounding. In-
terestingly, one does not need two complete adders to implement a compound
adder since hardware can be shared. On the other hand, this method does not
allow using a ppc(n) circuit with degenerate ◦-gates.

The idea behind sharing is that, in the first method way for computing A +
B + C[0], we do not rely on the carry-in C[0] to compute the functions πi. Only
after the functions πi are computed, the carry-in bit C[0] is used to determine
the initial state q0. The sum bits then satisfy S[i] = xor(πi−1(q0), pi), for i > 0.
This means that we can share the circuitry that computes πi for the computation
of the sum A + B and the incremented sum A + B + 1.

7.3 Fanout

The fanout of a circuit is the maximum fanout of an output port in the circuit.
Recall that the fanout of an output port is the number of input ports that are
connected to it. In reality, a large fanout slows down the circuit. The main reason
for this in CMOS technology is that each input port has a capacity. An output
port has to charge (or discharge) all the capacitors corresponding to the input
ports that it feeds. As the capacitance increases linearly with the fanout, the
delay associated with stabilizing the output signal also increases linearly with
the fanout. So it is desirable to keep the fanout low. (Delay grows even faster if
resistance is taken into account.)

Ladner and Fischer provided a complete analysis of the fanout. In the ppc(n)
circuit, the only cause for fanout greater than 2 are the branchings after the out-
put of ppc(n/2). Namely, only nets that feed outputs have a large fanout. Let
fo(i, n) denote the fanout of the net that feeds πi. It follows that fo(2i, 2n) =
1 and fo(2i + 1, 2n) = 1 + fo(i, n). Hence, the fanout is logarithmic. Brent
and Kung [BrentKung82] reduced the fanout to two but increased the cost to
O(n log n). One could achieve the same fanout while keeping the cost linear (see
question below for details); however, the focus in [BrentKung82] was area and a
regular layout, not cost.

Question 12. In this question we consider fanout in the ppc(n) design and sug-
gest a way to reduce the fanout so that it is at most two.

– What is the maximum fanout in the ppc(n) design?
– Find the output port with the largest fanout in the ppc(n) circuit.
– The fanout can be made constant if buffers are inserted according to the

following recursive rule. Insert a buffer in every branching point of the ppc(n)
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that is fed by an output of the ppc(n/2) design (such branching points are
depicted in Fig. 9 by filled circles below the ppc(n/2) circuit). (A buffer is
a combinational circuit that implements the identity function. A buffer can
be implemented by cascading two inverters.)

– By how much does the insertion of buffers increase the cost and delay?
– The rule for inserting buffers to reduce the fanout can be further refined to

save hardware without increasing the fanout. Can you suggest how?

7.4 Tradeoffs Between Cost and Delay

Ladner and Fischer [LadnerFischer80] present an additional type of “recursive
step” for constructing a parallel prefix circuit. This additional recursive step
reduces the delay at the price of increasing the cost and the fanout. For input
length n, Ladner and Fischer suggested log n different circuits. Loosely speaking,
in the kth circuit, one performs k recursive steps of the type we have presented
and then log n−k recursive steps of the second type. We refer the reader to [Lad-
nerFischer80] for the details and the analysis.

In the computer arithmetic literature several circuits have been suggested for
fast adders. For example, Kogge and Stone suggested a circuit with logarithmic
delay but its cost is O(n log n). Its asymptotic layout area is the same as the area
of the layout suggested by Brent and Kung. More details about other variations
and hybrids can be found in [Knowles99, Zimmerman98].

7.5 VLSI Area

This essay is about hardware designs of adders. Since such adders are imple-
mented as VLSI circuits, it makes sense to consider criteria that are relevant to
VLSI circuits. With all other factors remaining the same, area is more important
in VLSI than counting the number of gates. By area one means the area required
to draw the circuit on a chip. (Note, however, that more gates usually consume
more power.)

More about the model for VLSI area can be found in [Shiloach76, Thomp-
son80]. In fact, the first formal research on the area of hardware circuits was done
by Yossi Shiloach under the supervision of my father during the mid 70’s in the
Weizmann institute. This research was motivated by discussions with the people
who were building the second Golem computer using printed circuit boards.

In addition to reducing fanout, Brent and Kung “unrolled” the recursive
construction depicted in Fig. 9 and presented a regular layout for adders. The
area of this layout is O(n log n).

8 An Opinionated History of Adder Designs

The search for hardware algorithms for addition with short delay started in the
fifties. Ercegovac and Lang [ErceLang04] attribute the earliest reference for an
adder with a logarithmic delay to Weinberger and Smith [WeinSmith58]. This
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adder is often referred to as a carry-lookahead adder. On the other hand, Ladner
and Fischer cite Ofman [Ofman63] for a carry-lookahead adder. In Cormen et.
al., it is said that the circuit of Weinberger and Smith required large gates as
opposed to Ofman’s design that required constant size gates. So it seems that
in modern terms, the delay of the design of Weinberger and Smith was not
logarithmic.

I failed to locate these original papers. However, one can find descriptions
of carry-lookahead adders in [CLR90, ErceLang04, Koren93, Kornerup97]). The
topology of a carry-lookahead adder is a complete tree of degree 4 with log4 n
levels (any constant is fine, and 4 is the common choice). The data traverses
the tree from the leaves to the root and then back to the leaves. The carry-
lookahead adder is rather complicated and seems to be very specific to addition.
Even though the delay is logarithmic and the cost is linear, this adder was not
the “final word” on adders. In fact, due to its complexity, only the first two
layers of the carry-lookahead adder are described in detail in most textbooks
(see [Koren93, ErceLang04]).

The conditional-sum adder [Sklansky60] is a simple adder with logarith-
mic delay. However, its cost is O(n log n). Even worse, it has a linear fanout,
so in practice the delay is actually O(log2 n). The main justification for the
conditional-sum adder is that it is simple.

There was not much progress in the area of adder design till Ladner and
Fischer [LadnerFischer80] presented the parallel-prefix adder. Their idea was
to design small combinational circuits that simulate finite-state machines (i.e.,
transducers). They reduced this task to a prefix problem over an associative
operator. They call a circuit that computes the prefix problem a parallel prefix
circuit. When applied to the trivial bit-serial adder (implemented by a two-
state finite state machine), their method yielded a combinational adder with
logarithmic delay, linear size, and logarithmic fanout.

In fact, for every n, Ladner and Fischer presented log n different parallel
prefix circuits; these designs are denoted by Pk(n), for k = 0, . . . , log n. The
description of the circuits uses recursion. There are two types of recursion steps,
the combination of which yields log n different circuits. (For simplicity, we as-
sume throughout that n is a power of 2.) All these designs share a logarithmic
delay and a linear cost, however, the constants vary; reduced delay results in
increased size. Ladner and Fischer saw a similarity between Plog n(n) and the
carry-lookahead adder. However, they did not formalize this similarity and re-
sorted to the statement that ‘we believe that our circuit is essentially the same
as the “carry-lookahead” adder’.

Theory of VLSI was at a peak when Ladner and Fischer published their
paper. Brent and Kung [BrentKung82] popularized the parallel-prefix adder by
presenting a regular layout for the parallel-prefix adder Plog n(n). The layout
was obtained by “unrolling” the recursion in [LadnerFischer80]. The area of the
layout is O(n log n). In addition, Brent and Kung reduced the fanout of Plog n(n)
to two by inserting buffers. Since they were concerned with area and were not
sensitive to cost, they actually suggested increasing the cost to O(n log n) (see



On Teaching Fast Adder Designs: Revisiting Ladner & Fischer 345

Question 12 for guidelines regarding the reduction of the fanout while keeping
the cost linear.)

The adder presented in Brent and Kung’s paper is specific for addition. The
ideas of parallelizing the computation of a finite-state machine and the prefix
problem are not mentioned in [BrentKung82]. This meant that when teaching
the Brent-Kung adder, one introduces the carry-generate and carry-propagate
signals (i.e., gi, pi signals) without any motivation (i.e., it is a way to compute
the carry bits, but where does this originate from?). Even worse, the associative
operator is magically pulled out of the hat. Using simple and short algebraic
arguments, it is shown that applying this operator to a prefix problem leads
to the computation of the carry bits. Indeed, the proofs are short, but most
students find this explanation hard to follow. I suspect that the cause of this
difficulty is that no meaning is attached to the associative operator and to the
gi, pi signals.

The prefix problem gained a lot of success in the area of parallel compu-
tation. Leighton [Leighton91] presented a parallel prefix algorithm on a binary
tree. The presentation is for a synchronous parallel architecture, and hence the
computation proceeds in steps. I think that the simplest way to explain the par-
allel prefix algorithm on a binary tree is as a simulation of Ladner and Fischer’s
Plog n(n) circuit on a binary tree. In this simulation, every node in the binary
tree is in charge of simulating two nodes in Plog n (one before the recursive call
and one after the recursive call).

In Cormen et. al. [CLR90], a carry-lookahead adder is presented. This adder
is a hybrid design that combines the presentation of Brent and Kung and the
presentation of Leighton. The main problem with the presentation in [CLR90] is
that the topology is a binary tree and data traverses the tree in both directions
(i.e., from the leaves to the root and back to the leaves). Hence, it is not obvious
that the design is combinational (although it is). So the presentation in Cormen
et. al. introduces an additional cause for confusion. On the other hand, this
might be the key to explaining Ofman’s adder. Namely, perhaps Ofman’s adder
can be viewed as a simulation of Plog n(n) on a binary tree.

9 Discussion

When I wrote this essay, I was surprised to find that in many senses the pre-
sentation in [LadnerFischer80] is better than subsequent textbooks on adders
(including my own class notes). Perhaps the main reason for not adopting the
presentation in [LadnerFischer80] is that Ladner and Fischer presented two re-
cursion steps. The combination of these steps led to log n designs for parallel
prefix circuits with n arguments (and hence for n-bit adders). Only one of these
designs has gained much attention (i.e., the circuit they called Plog n(n)). There
are probably two reasons for the success of this circuit: fanout and area. Brent
and Kung were successful in reducing the fanout and presenting a regular layout
only for Plog n(n). It seems that these multiple circuits confused many who pre-
ferred then only to consider the presentation of Brent and Kung. In this essay
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only one type of recursion is described for constructing only one parallel prefix
circuit, namely, the Plog n(n) circuit.

I can speculate that the arithmetic community was accustomed to the carry-
propagate and carry-generate signals from the carry-lookahead adder. They did
not need motivation for it and the explanation of Ladner and Fischer was for-
gotten in favor of the presentation of Brent and Kung.

Another speculation is that the parallel computation community was inter-
ested in describing parallel algorithms on “canonic” graphs such as binary trees
and hypercubes (see [Leighton91]). The special graph of Ladner and Fischer did
not belong to this family. In hardware design, however, one has usually freedom
in selecting the topology of the circuit, so canonic graphs are not important.
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Abstract. We outline a conceptual framework for teaching the basic
notions and results of complexity theory. Our focus is on using definitions
and on organizing the presentation in a way that reflects the fundamental
nature of the material. We do not attempt to provide a self-contained
presentation of the material itself, but rather outline our suggestions
regarding how this material should be presented in class. In addition, we
express our opinions on numerous related issues.
We focus on the P-vs-NP Question, the general notion of a reduction,
and the theory of NP-completeness. In particular, we suggest presenting
the P-vs-NP Question both in terms of search problems and in terms
of decision problems (where NP is viewed as a class of proof systems).
As for the theory of NP-completeness, we suggest highlighting the mere
existence of NP-complete sets.

1 Introduction

This is a highly opinionated essay that advocates a concept-oriented approach
towards teaching technical material such as the basics of complexity theory. In
addition to making various suggestions, I express my opinion on a variety of
related issues. I do hope that this essay will stir discussion and maybe even
affect the way some courses are being taught.

1.1 Teaching and Current Student Perception of Complexity
Theory

Shimon Even had a passion for good teaching, and so writing this essay in his
memory seems most appropriate. In my opinion, good teaching is an art (and,
needless to say, Shimon was one of its top masters). It is hard (if at all possible)
to cultivate artistic talents, but there are certain basic principles that underly
each art form, and these can be discussed.

One central aspect of good teaching is putting things in the right perspective;
that is, a perspective that clarifies the motivation for the various definitions and
results. Nothing should be easier when it comes to complexity theory: It is easy

� This essay was written for the current volume. The technical presentation was
adapted from earlier lecture notes (e.g., [4]).
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to provide a good perspective on the basic notions and results of complexity
theory, because these are of fundamental nature and of great intuitive appeal.
Unfortunately, often this is not the way this material is taught. The annoying
(and quite amazing) consequences are students that have only a vague under-
standing of the conceptual meaning of these fundamental notions and results.

1.2 The Source of Trouble and Eliminating It

In my opinion, it all boils down to taking the time to explicitly discuss the con-
ceptual meaning of definitions and results. After all, the most important aspects
of a scientific discovery are the intuitive question that it addresses, the reason
that it addresses this question, the way it phrases the question, the approach
that underlies its answer, and the ideas that are embedded in the answer. All
these have to be reflected in the way the discovery is presented. In particular, one
should use the “right” definitions (i.e., those that reflect better the fundamental
nature of the notion being defined), and proceed in the (conceptually) “right”
order. Two concrete examples follow.

Typically1, NP is defined as the class of languages recognized by nonde-
terministic polynomial-time machines. Even bright students may have a hard
time figuring out (by themselves) why one should care about such a class. On
the other hand, when defining NP as the class of assertions that have easily
verifiable proofs, each student is likely to understand its fundamental nature.
Furthermore, the message becomes even more clear when discussing the search
version analogue.

Similarly, one typically1 takes the students throughout the detailed proof of
Cook’s Theorem before communicating to them the striking message (i.e., that
“universal” problems exist at all, let alone that many natural problems like SAT
are universal). Furthermore, in some cases, this message is not communicated
explicitly at all.

1.3 Concrete Suggestions

The rest of this essay provides concrete suggestions for teaching the basics of
complexity theory, where by the basics I mean the P-vs-NP Question and the
theory of NP-completeness. This material is typically taught as part of an un-
dergraduate course on computability and complexity theory, and my suggestions
are targeted primarily at computer scientists teaching such a course. However,
I believe that my suggestions are valid regardless of the context in which this
material is being taught.

I assume that the basic material itself is well-known to the reader. Thus, my
focus is not on the material itself, but rather on how it should be presented in
class. The two most important suggestions were already mentioned above:

1 However, exceptions do exists: There are teachers and even textbooks that deviate
from the standard practice being bashed here.
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1. The teacher should communicate the fundamental nature of the P-vs-NP
Question while referring to definitions that (clearly) reflect this nature. In
particular, I suggest explicitly presenting the implication of the P-vs-NP
Question on the complexity of search problems, in addition to presenting
the implication to decision problems.

2. The teacher should communicate the striking significance of the mere exis-
tence of NP-complete problems (let alone natural ones), before exhausting
the students with complicated reductions.

Additional suggestions include providing a general perspective on the concept
of a reduction, establishing tight relations between the complexity of search
and decision problems, decoupling the proof of NP-hardness of SAT by using
Circuit-SAT as an intermediate problem, and mentioning some additional topics
(e.g., NP-sets that are neither in P nor NP-complete) rather than a host of
NP-completeness results.

I advocate a model-independent presentation of the questions and results of
complexity theory. I claim that most questions and results in complexity theory
(like all results of computability theory) hold for any reasonable model of compu-
tation and can be presented with minimal reference to the specifics of the model.2

In fact, in most cases, the specific model of computation is irrelevant. Typically,
the presentation needs to refer to the specifics of the model of computation only
when encoding the relation between consecutive instantaneous configurations of
computation (see Section 4.3). However, such an encoding is possible for any
reasonable model of computation, and this fact should be stressed.

It is also important to start a course (or series of lectures) by providing a wide
perspective on its subject matter, which in this case is complexity theory. I would
say that complexity theory is a central field of (Theoretical) Computer Science,
concerned with the study of the intrinsic complexity of computational tasks,
where this study tend to aim at generality: The field focuses on natural compu-
tational resources (most notably time), and the effect of limiting these resources
on the class of problems that can be solved. Put in other words, complexity
theory aims at understanding the nature of efficient computation. I suggest re-
iterating the wider goals of complexity theory at the end of the course (or series
of lectures), and illustrating them at that point by sketching a few of the active
research directions and the results obtained in them. My own suggestion for such
a brief overview is presented in Section 6.

Finally, until we reach the day in which every student can be assumed to have
understood the meaning of the P-vs-NP Question and of NP-completeness, I sug-
gest not to assume such an understanding when teaching an advanced complexity

2 The specifics of the (reasonable) model are irrelevant for all questions and results
mentioned in this essay, except for Theorem 6 where the model is important only for
the exact bound on the slow-down of the optimal algorithm. Similarly, the specifics
of the model effect the exact quantitative form of hierarchy theorems, but not their
mere existence. Finally, in contrary to some beliefs, the specifics of the model are
irrelevant also for most results regarding space complexity, provided that reasonable
accounting of work-space is applied.
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theory course. Instead, I suggest starting such a course with a fast discussion
of the P-vs-NP Question and NP-completeness, making sure that the students
understand the conceptual meaning of these basics.3 (Needless to say, the rest
of the course should also clarify the conceptual meaning of the material being
taught.)

1.4 A Parenthetical Comment on Computability Versus Complexity

This essay refers to the current situation in many schools, where the basics of
complexity theory are taught within a course in which material entitled “com-
putability” plays at least an equal role. The essay is confined to the “complexity”
part of such a course, and takes the “computability” part for granted.

Let me seize the opportunity and express my opinion on this combined
course on computability and complexity theory. In my opinion, complexity the-
ory should play the main role in this course, whereas the basic concepts and
results of computability theory should be regarded as an important prelimi-
nary material. That is, I view computability theory as setting the stage for the
study of the complexity of the computational tasks that can be automated at
all. Thus, the computability aspects of such a course should be confined to es-
tablishing that the intuitive notion of an algorithm can be rigorously defined,
and to emphasizing the uncomputability of most functions and of some natural
functions (e.g., the Halting predicate). This includes introducing the idea of a
universal algorithm, but does not included extensive programming with Turing
machines or extensive study of (complexity-free) Turing reductions. Needless to
say, I oppose the teaching of finite automata (let alone context-free grammars)
within such a course.

Expanding upon the opinions expressed in the last paragraph is beyond the
scope of the current essay. On the other hand, the rest of this essay is independent
of the foregoing remarks. That is, it refers to the basic material of complexity
theory, regardless of the question within which course this material is taught
and what role does it play in such a course.

1.5 Organization

Section 2 contains a presentation of the P-vs-NP Question both in terms of
search problems and in terms of decision problems. Section 3 contains a general
treatment of reductions as well as a subsection on “self-reducibility” (of search
problems). Section 4 contains a presentation of the basic definitions and results
of the theory of NP-completeness (as well as a mention of the existence of NP-
sets that are neither in P nor NP-complete). Section 5 mentions three additional
topics that are typically not taught in a basic course on computability and
complexity theory. These topics include the conjectured non-existence of coNP-
sets that are NP-complete, the existence of optimal search algorithms for NP-
relations, and the notion of promise problems.
3 In fact, this essay is based on my notes for three lectures (covering the basic material),

which were given in a graduate course on complexity theory (see [4]).
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As a general rule, the more standard the material is, the less detail we provide
about is actual technical contents. Our focus is on the conceptual contents of the
material, and technical details are given merely for illustration. We stress again
that this essay is not supposed to serve as a textbook, but rather as a conceptual
framework.

The essay is augmented by a brief overview of complexity theory. Unlike
the rest of this essay, which assumes familiarity with the material, this overview
(Section 6) is supposed to be accessible to the novice (or an “outsider”), and may
be used accordingly. One possible use is as a base for introductory comments
on complexity theory to be made either at the beginning of a graduate course
on the topic or at the end of the (currently prevailing) undergraduate course on
computability and complexity theory.

2 P Versus NP

Most students have heard of P and NP before, but we suspect that many have not
obtained a good explanation of what the P-vs-NP Question actually represents.
This unfortunate situation is due to using the standard technical definition of NP
(which refers to nondeterministic polynomial-time) rather than using (somehat
more cumbersome) definitions that clearly capture the fundamental nature of
NP. Below, we take the alternative approach. In fact, we present two fundamental
formulations of the P-vs-NP Question, one in terms of search problems and the
other in terms of decision problems.

Efficient computation. The teacher should discuss the association of efficient
computation with polynomial-time algorithms, stressing that this association
merely provides a convenient way of addressing fundamental issues.4 In particu-
lar, polynomials are merely a “closed” set of moderately growing functions, where
“closure” means closure under addition, multiplication and functional compo-
sition. These closure properties guarantee the closure of the class of efficient
algorithms under natural algorithmic composition operations such as sequential
execution and subroutine calls. (The specifics of the model of computation are
also immaterial, as long as the model is “reasonable”; this strengthening of the
Church–Turing Thesis is called the Cobham–Edmonds Thesis.)

2.1 The Search Version: Finding Versus Checking

In the eyes of non-experts, search problems are more natural than decision prob-
lems: typically, people seeks solutions more than they stop to wonder whether
or not solutions exist. Thus, we recommend starting with a formulation of the
4 Indeed, we claim that these fundamental issues are actually independent of the

aforementioned association. For example, the question of whether finding a solution
is harder than verifying its validity makes sense under any reasonable notion of
“hardness”. Similarly, the claim that factoring (or any other “NP problem”) is “easily
reducible” to SAT holds for many reasonable notions of “easy to compute” mappings.
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P-vs-NP Question in terms of search problems. Admittingly, the cost is more
cumbersome formulations (presented in Figure 1), but it is more than worth-
while. Furthermore, the equivalence to the decision problem formulation gives
rise to conceptually appealing exercises.

We focus on polynomially-bounded relations, where a relation R ⊆ {0, 1}∗×
{0, 1}∗ is polynomially-bounded if there exists a polynomial p such that for every
(x, y) ∈ R it holds that |y| ≤ p(|x|). For such a relation it makes sense to
ask whether, given an “instance” x, one can efficiently find a “solution” y such
that (x, y) ∈ R. The polynomial bound on the length of the solution (i.e., y)
guarantees that the intrinsic complexity of outputting a solution may not be
due to the length (or mere typing) of the required solution.

The class P as a natural class of search problems. With each polynomially-
bounded relation R, we associate the following search problem: given x find y
such that (x, y) ∈ R or state that no such y exists. The class P corresponds5

to the class of search problems that are solvable in polynomial-time; that is, a
relation R (or rather the search problem of R) is polynomial-time solvable if there
exists a polynomial-time algorithm that given x find y such that (x, y) ∈ R or
state that no such y exists.

The class NP as another natural class of search problems. A polyno-
mially-bounded relation R is called an NP-relation if, given an alleged instance-
solution pair, one can efficiently check whether or not the pair is valid; that is,
there exists a polynomial-time algorithm that given x and y determines whether
or not (x, y) ∈ R. The class NP corresponds5 to the class of search problems for
NP-relations (and contains a host of natural search problems). It is reasonable to
focus on search problems for NP-relations, because the ability to efficiently recog-
nize a valid solution seems to be a natural prerequisite for a discussion regarding
the complexity of finding such solutions. (Indeed, one can introduce (unnatural)
non-NP-relations for which the search problem is solvable in polynomial-time;
still the restriction to NP-relations is very natural.)

The P versus NP question in terms of search problems: Is it the case
that the search problem of any NP-relation can be solved in polynomial-time? In
other words, if it is easy to check whether or not a given solution for a given
instance is correct, then is it also easy to find a solution to a given instance?

If P = NP (in terms of search problems) then this would mean that whenever
solutions to given instances can be efficiently verified for correctness it is also the
case that these solutions can be efficiently found (when given only the instance).
This would mean that all reasonable search problems (i.e., all NP-relations) are
easy to solve. Needless to say, such a situation would contradict the intuitive
5 We leave it to the teacher whether to actually define P (resp., NP) as a class of

search problems or to reserve this notion for the relevant class of decision problems
(and merely talk about a “correspondence” between the search and decision problem
classes). Our own preference is to introduce different notations for the search problem
classes (see Figure 1).



354 Oded Goldreich

feeling (and daily experience) that some reasonable search problems are hard to
solve. On the other hand, if P = NP then there exist reasonable search problems
(i.e., some NP-relations) that are hard to solve. This conforms with our daily
experience by which some reasonable problems are easy to solve whereas others
are hard to solve.

Recall that search problems refer to binary relations. For such a relation R, the
corresponding search problem is given x to find y such that (x, y) ∈ R (or assert
that no such y exists). We suggest defining two classes of search problems.

– PF (standing for “Poly-Find”) denotes the class of search problems that are
solvable in polynomial-time. That is, R ∈ PF if there exists a polynomial
time algorithm that given x finds y such that (x, y) ∈ R (or assert that no
such y exists).

– PC (standing for “Poly-Check”) denotes the class of search problems that
correspond to polynomially-bounded binary relations that are “checkable” in
polynomial-time. That is, R ∈ PC if the following two conditions hold
1. For some polynomial p, if (x, y) ∈ R then |y| ≤ p(|x|).
2. There exists a polynomial-time algorithm that given (x, y) determines

whether or not (x, y) ∈ R.

In terms of search problems the P-vs-NP Question consists of asking whether or
not PC is contained in PF . The conjectured inequality P �= NP implies that
PC \ PF �= ∅.

Fig. 1. P-vs-NP in terms of search problems: notational suggestions.

2.2 The Decision Version: Proving Versus Verifying

We suggest starting by asserting the natural stature of decision problems (be-
yond their role in the study of search problems). After all, some people do care
about the truth, and so determining whether a given object has some claimed
property is an appealing problem. The P-vs-NP Question refers to the com-
plexity of answering such questions for a wide and natural class of properties
associated with the class NP . The latter class refers to properties that have effi-
cient proof systems allowing for the verification of the claim that a given object
has a predetermined property (i.e., is a member of a predetermined set).

For an NP-relation R, we denote the set of instances having a solution by LR;
that is, LR = {x : ∃y (x, y) ∈ R}. Such a set is called an NP-set, and NP denotes
the class of all NP-sets. Intuitively, an NP-set is a set of valid statements (i.e.,
statements of membership of a given x in LR) that can be efficiently verified when
given adequate proofs (i.e., a corresponding NP-witness y such that (x, y) ∈ R).
This leads to viewing NP-sets as proof systems.
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NP-proof systems. Proof systems are defined in terms of their verification pro-
cedures. Here we focus on the natural class of efficient verification procedures,
where efficiency is represented by polynomial-time computations. (We should
either require that the time is polynomial in terms of the statement or confine
ourselves to “short proofs” – that is, proofs of length that is bounded by a poly-
nomial in the length of the statement.) NP-relations correspond to proof systems
with efficient verification procedures. Specifically, the NP-relation R corresponds
to the (proof system with a) verification procedure that checks whether or not
the alleged statement-proof pair is in R. This proof system satisfies the natural
completeness and soundness conditions: every true statement (i.e., x ∈ LR) has a
valid proof (i.e., an NP-witness y such that (x, y) ∈ R), whereas false statements
(i.e., x ∈ LR) have no valid proofs (i.e., (x, y) ∈ R for all y’s).

Recall that decision problems refer to membership in sets. We suggest defin-
ing two classes of decision problems, which indeed coincide with the standard
definitions of P and NP .

– P denotes the class of decision problems that are solvable in polynomial-
time. That is, S ∈ P if there exists a polynomial time algorithm that given
x determines whether or not x ∈ S.

– NP denotes the class of decision problems that have NP-proof systems. The
latter are defined in terms of a (deterministic) polynomial-time verification
algorithm. That is, S ∈ NP if there exists a polynomial p and a polynomial-
time algorithm V that satisfy the following completeness and soundness con-
ditions:
1. Completeness: if x ∈ S then there exists y of length at most p(|x|) such

that V (x, y) = 1.
(Such a string y is called an NP-witness for x ∈ S.)

2. Soundness: if x �∈ S then for every y it holds that V (x, y) = 0.
Indeed, the point is defining NP as a class of sets of assertions having efficient
verification procedures.

In terms of decision problems the P-vs-NP Question consists of asking whether
or not NP is contained in P . Since P ⊆ NP , the question is phrased as whether
or not NP equals P .

Fig. 2. P-vs-NP in terms of decision problems: notational suggestions.

The P versus NP question in terms of decision problems: Is it the
case that NP-proofs are useless? That is, is it the case that for every efficiently
verifiable proof system one can easily determine the validity of assertions (with-
out being given suitable proofs)? If that were the case, then proofs would be
meaningless, because they would have no fundamental advantage over directly
determining the validity of the assertion. Denoting by P the class of sets that
can be decided efficiently (i.e., by a polynomial-time algorithm), the conjecture
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P = NP asserts that proofs are useful: there exists NP-sets that cannot be
decided by a polynomial-time algorithm, and so for these sets obtaining a proof
of membership (for some instances) is useful (because we cannot efficiently de-
termine membership by ourselves).

2.3 Equivalence of the Two Formulations

We strongly recommend proving that the two formulations of the P-vs-NP Ques-
tions are equivalent. That is, the search problem of every NP-relation is solvable
in polynomial time if and only if membership in any NP-set can be decided in
polynomial time (see Figure 3). This justifies the focus on the latter (simpler)
formulation.

Referring the notations of Figures 1 and 2, we prove that PC ⊆ PF if and only
if NP = P .

– Suppose that the inclusion holds for the search version (i.e., PC ⊆ PF). Let L
be an arbitrary NP-set and RL be the corresponding witness relation. Then
RL is a NP-relation, and by the hypothesis its search problem is solvable
in polynomial time (i.e., RL ∈ PC ⊆ PF). This yields a polynomial-time
decision procedure for L; i.e., given x try to find y such that (x, y) ∈ RL

(and output “yes” iff such a y was found). Thus, NP = P follows.
– Suppose that NP = P (as classes of sets), and let R be an arbitrary NP-

relation. Then the set SR
def
= {(x, y′) : ∃y′′ s.t. (x, y′y′′) ∈ R} (where y′y′′

denotes the concatenation of y′ and y′′) is in NP and hence in P . This
yields a polynomial-time algorithm for solving the search problem of R, by
extending a prefix of a potential solution bit by bit (while using the decision
procedure to determine whether or not the current prefix is valid). Thus,
PC ⊆ PF follows.

Fig. 3. A proof that PC ⊆ PF if and only if NP = P .

We also suggest mentioning that NP is sometimes defined as the class of sets
that can be decided by a fictitious device called a nondeterministic polynomial-
time machine (and that this is the source of the notation NP). The reason that
this class of fictitious devices is important is because it captures (indirectly) the
definition of NP-proof systems. We suggest proving that indeed the definition of
NP in terms of nondeterministic polynomial-time machine equals our definition
of NP (in terms of the class of sets having NP-proof systems).

3 Reductions and Self-Reducibility

We assume that many students have heard of reductions, but again we fear that
most of them have obtained a conceptually poor view of their nature. We believe
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that this is due to expositions that start with a technical definition of many-
to-one (polynomial-time) reductions (i.e., Karp-reductions), rather than with a
motivational discussion. Below, we take an the alternative approach, presenting
first the general notion of (polynomial-time) reductions among computational
problems, and viewing the notion of a Karp-reduction as an important special
case that suffices (and is more convenient) in many cases.

3.1 The General Notion of a Reduction

Reductions are procedures that use “functionally specified” subroutines. That
is, the functionality of the subroutine is specified, but its operation remains
unspecified and its running-time is counted at unit cost. Analogously to algo-
rithms, which are modeled by Turing machines, reductions can be modeled as
oracle (Turing) machines. A reduction solves one computational problem (which
may be either a search or decision problem) by using oracle (or subroutine) calls
to another computational problem (which again may be either a search or de-
cision problem). We focus on efficient (i.e., polynomial-time) reductions, which
are often called Cook reductions.

The key property of reductions is that they translate efficient procedures for
the subroutine into efficient procedures for the invoking machine. That is, if one
problem is Cook-reducible to another problem and the latter is polynomial-time
solvable then so is the former.

The most popular case is of reducing decision problems to decision problems,
but we will also consider reducing search problems to search problems or reducing
search problems to decision problems. Indeed, a good exercise is showing that
the search problem of any NP-relation can be reduced to deciding membership
in some NP-set (which is the actual contents of the second item of Figure 3).

A Karp-reduction is a special case of a reduction (from a decision problem to
a decision problem). Specifically, for decision problems L and L′, we say that L
is Karp-reducible to L′ if there is a reduction of L to L′ that operates as follows:
On input x (an instance for L), the reduction computes x′, makes query x′ to the
oracle L′ (i.e., invokes the subroutine for L′ on input x′), and answers whatever
the latter returns. This Karp-reduction is often represented by the polynomial-
time computable mapping of x to x′; that is, a polynomial-time computable f is
called a Karp-reduction of L to L′ if for every x it holds that x ∈ L iff f(x) ∈ L′.

Indeed, a Karp-reduction is a syntactically restricted notion of a reduction.
This restricted case suffices for many cases (e.g., most importantly for the theory
of NP-completeness (when developed for decision problems)), but not in case we
want to reduce a search problem to a decision problem. Furthermore, whereas
each decision problem is reducible to its complement, some decision problems
are not Karp-reducible to their complement (e.g., the trivial decision problem).6

Likewise, each decision problem in P is reducible to any computational problem
by a reduction that does not use the subroutine at all, whereas such a trivial

6 We call a decision problem trivial if it refers to either the empty set or the set of all
strings.
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reduction is disallowed by the syntax of Karp-reductions. (Nevertheless, a pop-
ular exercise of dubious nature is to show that any decision problem in P is
Karp-reducible to any non-trivial decision problem.)

We comment that Karp-reductions may (and should) be augmented in order
to handle reductions of search problems to search problems. Such an augmented
Karp-reduction of the search problem of R to the search problem of R′ operates
as follows: On input x (an instance for R), the reduction computes x′, makes
query x′ to the oracle R′ (i.e., invokes the subroutine for searching R′ on input
x′) obtaining y′ such that (x′, y′) ∈ R′, and uses y′ to compute a solution y to x
(i.e., (x, y) ∈ R). Thus, such a reduction can be represented by two polynomial-
time computable mappings, f and g, such that (x, g(x, y′)) ∈ R for any y′ that
solves f(x) (i.e., y′ that satisfies (f(x), y′) ∈ R′). (Indeed, in general, unlike in
the case of decision problems, the reduction cannot just return y′ as an answer
to x.)

We say that two problems are computationally equivalent if they are reducible
to one another. This means that the two problems are essentially equally hard
(or equally easy).

3.2 Self-Reducibility of Search Problems

We suggest introducing the notion of self-reducibility7 for several reasons. Most
importantly, it further justifies the focus on decision problems (see discussion fol-
lowing Proposition 1). In addition, it illustrates the general notion of a reduction,
and asserts its relevance beyond the theory of NP-completeness.

The search problem of R is called self-reducible if it can be reduced to the
decision problem of LR = {x : ∃y (x, y) ∈ R} (rather than to the set SR as in
Figure 3). Note that the decision problem of LR is always reducible to the search
problem for R (e.g., invoke the search subroutine and answer “yes” if and only
if it returns some string (rather than the “no solution” symbol)).

We will see that all NP-relations that correspond to NP-complete sets are
self-reducible, mostly via “natural reductions”. We start with SAT, the set of
satisfiable Boolean formulae (in CNF). Let RSAT be the set of pairs (φ, τ) such
that τ is a satisfying assignment to the formulae φ. Note that RSAT is an NP-
relation (i.e., it is polynomially-bounded and easy to decide (by evaluating a
Boolean expression)).

Proposition 1 (RSAT is self-reducible): The search problem of RSAT is re-
ducible to SAT .

7 Our usage of this term differs from the traditional one. Traditionally, a decision
problem is called self-reducible if it is Cook-reducible to itself via a reduction that
on input x only makes queries that are smaller than x (according to some appropriate
measure on the size of strings). Under some natural restrictions (i.e., the reduction
takes the disjunction of the oracle answers) such reductions yield reductions of search
to decision (as discussed in the main text).
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Thus, the search problem of RSAT is computationally equivalent to deciding
membership in SAT . Hence, in studying the complexity of SAT , we also address
the complexity of the search problem of RSAT . This justifies the relevance of
decision problems to search problems in a stronger sense than established in
Section 2.3: The study of decision problems determines not only the complexity
of the class of “NP-search” problems but rather determines the complexity of
each individual search problem that is self-reducible.

Proof: Given a formula φ, we use a subroutine for SAT in order to find a
satisfying assignment to φ (in case such an assignment exists). First, we query
SAT on φ itself, and return “no solution” if the answer we get is ‘false’. Otherwise,
we let τ , initiated to the empty string, denote a prefix of a satisfying assignment
of φ. We proceed in iterations, where in each iteration we extend τ by one bit.
This is done as follows: First we derive a formula, denoted φ′, by setting the first
|τ |+1 variables of φ according to the values τ0. Next we query SAT on φ′ (which
means that we ask whether or not τ0 is a prefix of a satisfying assignment of
φ). If the answer is positive then we set τ ← τ0 else we set τ ← τ1 (because if
τ is a prefix of a satisfying assignment of φ and τ0 is not a prefix of a satisfying
assignment of φ then τ1 must be a prefix of a satisfying assignment of φ).

A key point is that each formula φ′ (which contains Boolean variables as
well as constants) can be simplified to contain no constants (in order to fit the
canonical definition of SAT, which disallows Boolean constants). That is, after
replacing some variables by constants, we should simplify clauses according to
the straightforward boolean rules (e.g., a false literal can be omitted from a
clause and a true literal appearing in a clause allows omitting the entire clause).

Advanced comment: A reduction analogous to the one used in the proof of
Proposition 1 can be presented also for other NP-search problems (and not
only for NP-complete ones).8 Consider, for example, the problem Graph 3-
Colorability and prefixes of a 3-coloring of the input graph. Note, however, that
in this case the process of getting rid of constants (representing partial solutions)
is more involved.9 In general, if you don’t see a “natural” self-reducibility process
for some NP-complete relation, you should know that a self-reduction process
does exist (alas it maybe not be a natural one).

Theorem 2 The search problem of the NP-relation of any NP-complete set is
self-reducible.

8 We assume that the students have heard of NP-completeness. If this assumption
does not hold for your class, then the presentation of the following material should
be postponed (to Section 4.1 or to an even later stage).

9 Details can left as an exercise to the student. You may hint that a partial 3-coloring
can be hard-wired into the graph by augmenting the graph with adequate gadgets
that force equality (or inequality) between the colors of two vertices (of our choice).
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Proof: Let R be an NP-relation of the NP-complete set LR. In order to re-
duce the search problem of R to deciding LR, we compose the three reductions
mentioned next:

1. The search problem of R is reducible to the search problem of RSAT (by the
NP-completeness of the latter).

2. The search problem of RSAT is reducible to SAT (by Proposition 1).
3. The decision problem SAT is reducible to the decision problem LR (by the

NP-completeness of the latter).

The theorem follows.

4 NP-completeness

Some (or most) students have heard of NP-completeness before, but we suspect
that many have missed important conceptual points. Specifically, we stress that
the mere existence of NP-complete sets (regardless of whether this is SAT or
some other set) is amazing.

4.1 Definitions

The standard definition is that a set is NP-complete if it is in NP and every
set in NP is reducible to it via a Karp-reduction. Indeed, there is no reason to
insist on Karp-reductions (rather than using arbitrary reductions), except that
the restricted notion suffices for all positive results and is easier to work with.

We will also refer to the search version of NP-completeness. We say that a
binary relation is NP-complete if it is an NP-relation and every NP-relation is
reducible to it.

We stress that the mere fact that we have defined something (i.e., NP-
completeness) does not mean that this thing exists (i.e., that there exist objects
that satisfy the definition). It is indeed remarkable that NP-complete problems
do exist. Such problems are “universal” in the sense that solving them allows
solving any other (reasonable) problem.

4.2 The Existence of NP-complete Problems

We suggest not to confuse the mere existence of NP-complete problems, which is
remarkable by itself, with the even more remarkable existence of “natural” NP-
complete problems. We believe that the following proof facilitates the delivery
of this message as well as focusing on the essence of NP-completeness, rather
than on more complicated technical details.

Theorem 3 There exist NP-complete relations and sets.
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Proof: The proof (as well as any other NP-completeness proof) is based on the
observation that some NP-relations (resp., NP-sets) are “rich enough” to encode
all NP-relations (resp., NP-sets). This is most obvious for the “generic” NP-
relation, denoted RU (and defined below), which is used to derive the simplest
proof of the current theorem.

The relation RU consists of pairs (〈M, x, 1t〉, y) such that M is a description
of a (deterministic) Turing machine that accepts the pair (x, y) within t steps,
where |y| ≤ t. (Instead of requiring that |y| ≤ t, one may require that M is
canonical in the sense that it reads its entire input before halting.) It is easy
to see that RU is an NP-relation, and thus LU

def= {x : ∃y (x, y) ∈ RU} is
an NP-set. Indeed, RU is recognizable by a universal Turing machine, which
on input (〈M, x, 1t〉, y) emulates (t steps of) the computation of M on (x, y),
and U indeed stands for universal (machine). (Thus, the proof extends to any
reasonable model of computation, which has adequate universal machines.)

We now turn to showing that any NP-relation is reducible to RU . As a
warm-up, let us first show that any NP-set is Karp-reducible to LU . Let R be
an NP-relation, and LR = {x : ∃y (x, y) ∈ R} be the corresponding NP-set. Let
pR be a polynomial bounding the length of solutions in R (i.e., |y| ≤ pR(|x|) for
every (x, y) ∈ R), let MR be a polynomial-time machine deciding membership
(of alleged (x, y) pairs) in R, and let tR be a polynomial bounding its running-
time. Then, the Karp-reduction maps an instance x (for L) to the instance
〈MR, x, 1tR(|x|+pR(|y|))〉.

Note that this mapping can be computed in polynomial-time, and that x ∈ L
if and only if 〈MR, x, 1tR(|x|+pR(|y|))〉 ∈ LU .

To reduce the search problem of R to the search problem of RU , we use
essentially the same reduction. On input an instance x (for R), we make the
query 〈MR, x, 1tR(|x|+pR(|y|))〉 to the search problem of RU and return what-
ever the latter returns. Note that if x ∈ LR then the answer will be “no
solution”, whereas for every x and y it holds that (x, y) ∈ R if and only if
(〈MR, x, 1tR(|x|+pR(|y|))〉, y) ∈ RU .

Advanced comment. Note that the role of 1t in the definition of RU is to
make RU an NP-relation. In contrast, consider the relation RH

def= {(〈M, x〉, y) :
M(xy) = 1} (which corresponds to the halting problem). Indeed, the search
problem of any relation (an in particular of any NP-relation) is Karp-reducible
to the search problem of RH , but the latter is not solvable at all (i.e., there exists
no algorithm that halts on every input and on input x = 〈M, x〉 outputs y such
that (x, y) ∈ RH iff such a y exists).

4.3 CSAT, SAT, and Other NP-complete Problems

Once the mere existence of NP-complete problems has been established, we
suggest informing the students of the fact that many natural problems are NP-
complete, and demonstrating this fact with a few examples. Indeed, SAT is a
good first example, both because the reduction to it is instructive and because
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it is a convenient starting point to further reductions. As a second example,
we suggest various variants of the Set Cover problem. Additional reductions
may be deferred to homework assignments, and presenting them in class seems
inadequate in the context of a course on complexity theory.

We suggest establishing the NP-completeness of SAT by a reduction from
the circuit satisfaction problem (CSAT), after establishing the NP-completeness
of the latter. Doing so allows decoupling two important issues in the proof of
the NP-completeness of SAT: (1) the emulation of Turing machines by circuits,
and (2) the encoding of circuits by formulae with auxiliary variables. Following
is a rough outline, which focuses on the decision version.

CSAT. Define Boolean circuits as directed acyclic graphs with internal vertices,
called gates, labeled by Boolean operations (of arity either 2 or 1), and external
vertices called terminals that are associated with either inputs or outputs. When
setting the inputs of such a circuit, all internal nodes are assigned values in the
natural way, and this yields a value to the output(s), called an evaluation of the
circuit on the given input. Define the satisfiability problem of such circuits as
determining, for a given circuit, whether there exists a setting to its inputs that
makes its (first) output evaluate to 1. Prove the NP-completeness of the circuit
satisfaction problem (CSAT), by reducing any NP-set to it (where the set is
represented by the machine that recognizes the corresponding NP-relation). The
reduction boils down to encoding possible computations of a Turing machine
by a corresponding layered circuit, where each layer represents an instantaneous
configuration of the machine, and the relation between consecutive configura-
tions is captured by (“uniform”) local gadgets in the circuit. For further details,
see Figure 4. (The proof extends to any other “reasonable” model of efficient
computation.)

The above reduction is called “generic” because it (explicitly) refers to any
(generic) NP-set. However, the common practice is to establish NP-completeness
by a reduction from some NP-complete set (i.e., a set already shown to be NP-
complete). This practice is based on the fact that if an NP-complete problem Π
is reducible to some problem Π ′ in NP then Π ′ is NP-complete. The proof of
this fact boils down to asserting the transitivity of reductions.

SAT. Define Boolean formulae, which may be viewed as Boolean circuits with
a tree structure. Prove the NP-completeness of the formula satisfaction problem
(SAT), even when the formula is given in a nice form (i.e., CNF). The proof is
by a reduction from CSAT, which in turn boils down to introducing auxiliary
variables in order to cut the computation of a deep circuit into a conjunction of
related computations of shallow (i.e., depth-2) circuits (which may be presented
as CNF formulae). The aforementioned auxiliary variables hold the possible
values of the internal wires of the circuit.

3SAT. Note that the formulae resulting from the latter reduction are in con-
junctive normal form (CNF) with each clause referring to three variables (i.e.,
two corresponding to the input wires of a node/gate and one to its output wire).
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Following are some additional comments on the proof of the NP-completeness of
CSAT. These comments refer to the high-level structure of the reduction, and do
not provide a full (low-level) description of it.
For a machine MR (as in the proof of Theorem 3), we will represent the com-
putation of MR on input (x, y), where x is the input to the reduction and y is
undetermined, by a circuit Cx that takes such a string y as input. Thus, Cx(y) = 1
if and only if MR accepts (x, y), and so Cx is satisfiable if and only if x ∈ LR.
The reduction maps x to a circuit Cx as follows.
The circuit Cx consists of layers such that the ith layers of wires (connecting
the i − 1st and ith layers of vertices) represents the instantaneous configuration
of MR(x, y) just before the ith step. In particular, the gates of the i + 1st layer
are designed to guaranteed that the instantaneous configuration of MR(x, y) just
before the ith step is transformed to the instantaneous configuration of MR(x, y)
just before the i + 1st step. Only the first layer of Cx depends on x itself (which
is “hard-wired” into the circuit). The rest of the construction depends only on
|x| and MR.

Fig. 4. Encoding computations of a Turing machine in a Boolean circuit.

Thus, the above reduction actually establishes the NP-completeness of 3SAT
(i.e., SAT restricted to CNF formula with up to three variables per clause). Al-
ternatively, reduce SAT (for CNF formula) to 3SAT (i.e., satisfiability of 3CNF
formula) by replacing long clauses with conjunctions of three-variable clauses
using auxiliary variables.

In order to establish the NP-completeness of the search version of the afore-
mentioned problems we need to present a polynomial-time mapping of solutions
for the target problem (e.g., SAT) to solutions for the origin problem (e.g.,
CSAT). Note that such a mapping is typically explicit in the argument estab-
lishing the validity of the Karp-reduction.

Set Cover and other problems. If time permits, one may want to present
another class of NP-complete problems, and our choice is of Set Cover. There
is a simple reduction from SAT to Set Cover (with the sets corresponding to
the sets of clauses that are satisfied when assigning a specific Boolean variable
a specific Boolean value). When applied to a restricted version of SAT in which
each variable appears in at most three clauses, the same reduction implies the
NP-completeness of a version of Set Cover in which each set contains at most
three elements. (Indeed, one should first establish the NP-completeness of the
aforementioned restricted version of SAT.) Using the restricted version of Set
Cover one may establish the NP-completeness of Exact Cover (even when re-
stricted to 3-element sets). The latter problem is a convenient starting point for
further reductions.
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4.4 NP Sets That Are Neither in P nor NP-complete

Many (to say the least) other NP-sets have been shown to be NP-complete. A
very partial list includes Graph 3-Colorability, Subset Sum, (Exact) Set Cover,
and the Traveling Salesman Problem. (Hundreds of other natural problems can
be found in [3].) Things reach a situation in which some computer scientists
seem to expect any NP-set to be either NP-complete or in P . This naive view is
wrong:

Theorem 4 Assuming NP = P, there exist NP-sets that are neither NP-
complete nor in P.

We mention that some natural problems (e.g., factoring) are conjectured to be
neither solvable in polynomial-time nor NP-hard, where a problem Π is NP-hard
if any NP-set is reducible to solving Π . See discussion following Theorem 5. We
recommend to either state Theorem 4 without a proof or merely provide the
proof idea (which is sketched next).

Proof idea. The proof is by modifying a set in NP\P such that to fail all possible
reductions (to this set) and all possible polynomial-time decision procedures (for
this set). Specifically, we start with some L ∈ NP \P and derive L′ ⊂ L (which
is also in NP \ P) by making each reduction (say of L) to L′ fail by dropping
finitely many elements from L (until the reduction fails), whereas all possible
polynomial-time fail to decide L′ (which differ from L only on a finite number
of inputs). We use the fact that any reduction (of some set in NP \ P) to a
finite set (i.e., a finite subset of L) must fail (and this failure is due to a finite
set of queries), whereas any efficient decision procedure for L (or L modified on
finitely many inputs) must fail on some finite portion of all possible inputs (of L).
The process of modifying L into L′ proceeds in iterations, alternatively failing a
potential reduction (by dropping sufficiently many strings from the rest of L) and
failing a potential decision procedure (by including sufficiently many strings from
the rest of L). This can be done efficiently because it is inessential to determine
the optimal points of alternation (where sufficiently many strings were dropped
(resp., included) to fail a potential reduction (resp., decision procedure)). Thus,
L′ is the intersection of L and some set in P , which implies that L′ ∈ NP \ P .

5 Three Additional Topics

The following topics are typically not mentioned in a basic course on complexity.
Still, pending on time constraints, we suggest covering them at some minimal
level.

5.1 The Class coNP and NP-completeness

By prepending the name of a complexity class (of decision problems) with the
prefix “co” we mean the class of complement sets; that is,

coC def= {{0, 1}∗ \ L : L ∈ C}
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Specifically, coNP = {{0, 1}∗ \L : L ∈ NP} is the class of sets that are comple-
ments of NP-sets. That is, if R is an NP-relation and LR = {x : ∃y (x, y) ∈ R}
is the associated NP-set then {0, 1}∗ \ LR = {x : ∀y (x, y) ∈ R} is the corre-
sponding coNP-set.

It is widely believed that NP is not closed under complementation (i.e.,
NP = coNP). Indeed, this conjecture implies P = NP (because P is closed
under complementation). The conjecture NP = coNP means that some coNP-
sets (e.g., the complements of NP-complete sets) do not have NP-proof systems;
that is, there is no NP-proof system for proving that a given formula is not
satisfiable.

If indeed NP = coNP then some NP-sets cannot be Karp-reducible to any
coNP-set.10 However, each NP-set is reducible to some coNP-set (by a straight-
forward Cook-reduction that just flips the answer), and so the non-existence of
such Karp-reduction does not seem to represent anything really fundamental. In
contrast, we mention that NP = coNP implies that some NP-sets cannot be
reduced to sets in the intersection NP ∩ coNP (even under general (i.e., Cook)
reductions). Specifically,

Theorem 5 If NP ∩ coNP contains an NP-hard set then NP = coNP.

Recall that a set is NP-hard if every NP-set is reducible to it (possibly via a
general reduction). Since NP ∩ coNP is conjectured to be a proper superset of
P , it follows (using the conjecture NP = coNP) that there are NP-sets that
are neither in P nor NP-hard (specifically, the sets in (NP ∩ coNP) \ P are
neither in P nor NP-hard). Notable candidates are sets related to the integer
factorization problem (e.g., the set of pairs (N, s) such that s has a square root
modulo N that is a quadratic residue modulo N and the least significant bit of
s equals 1).

Proof: Suppose that L ∈ NP∩coNP is NP-hard. Given any L′ ∈ coNP , we will
show that L′ ∈ NP . We will merely use the fact that L′ reduces to L (which is
in NP∩coNP). Such a reduction exists because L′ is reducible L

′ def= {0, 1}∗\L′

(via a general reduction), whereas L
′ ∈ NP and thus is reducible to L (which is

NP-hard).
To show that L′ ∈ NP , we will present an NP-relation, R′, that characterizes

L′ (i.e., L′ = {x : ∃y (x, y) ∈ R′}). The relation R′ consists of pairs of the
form (x, ((z1, σ1, w1), ..., (zt, σt, wt))), where on input x the reduction of L′ to L
accepts after making the queries z1, ..., zt, obtaining the corresponding answers
σ1, ..., σt, and for every i it holds that if σi = 1 then wi is an NP-witness for
zi ∈ L, whereas if σi = 0 then wi is an NP-witness for zi ∈ {0, 1}∗ \ L.
10 Specifically, we claim that sets in NP \ coNP cannot be Karp-reducible to sets

in coNP . In fact, we prove that only sets in coNP are Karp-reducible to sets in
coNP. Equivalently, let us prove that only sets in NP are Karp-reducible to sets
in NP , where the equivalence follows by noting that a reduction of L to L′ is also
a reduction of {0, 1}∗ \ L to {0, 1}∗ \ L′. Indeed, suppose that L Karp-reduces to
L′ ∈ NP. Then L ∈ NP by virtue of the NP-relation {(x, y) : (f(x), y) ∈ R′}, where
R′ is the witness relation of L′.
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We stress that we use the fact that both L and L
def= {0, 1}∗ \L are NP-sets,

and refer to the corresponding NP-witnesses. Note that R′ is indeed an NP-
relation: The length of solutions is bounded by the running-time of the reduction
(and the corresponding NP-witnesses). Membership in R′ is decided by checking
that the sequence of (zi, σi)’s matches a possible query-answer sequence in an
accepting execution of the reduction11 (ignoring the correctness of the answers),
and that all answers (i.e., σi’s) are correct. The latter condition is easily verified
by use of the corresponding NP-witnesses.

5.2 Optimal Search Algorithms for NP-relations

The title of this section sounds very promising, but our guess is that the students
will be less excited once they see the proof. We claim the existence of an optimal
search algorithm for any NP-relation. Furthermore, we will explicitly present
such an algorithm, and prove that it is optimal (without knowing its running
time).

Theorem 6 For every NP-relation R there exists an algorithm A that satisfies
the following:

1. A correctly solves the search problem of R.
2. There exists a polynomial p such that for every algorithm A′ that correctly

solves the search problem of R and for every x ∈ LR = {z : ∃y (z, y) ∈ R}
it holds that tA(x) = O(tA′(x) + p(|x|)), where tA (resp., tA′) denotes the
number of steps taken by A (resp., A′) on input x.

We stress that the hidden constant in the O-notation depends only on A′, but in
the following proof the dependence is exponential in the length of the descrip-
tion of algorithm A′ (and it is not known whether a better dependence can be
achieved). Optimality holds in a “point-wise” manner (i.e., for every input), and
the additive polynomial term (i.e., p(|x|)) is insignificant in case the NP-problem
is not solvable in polynomial-time. On the other hand, the optimality of algo-
rithm A refers only to inputs that have a solution (i.e., x ∈ LR). Interestingly, we
establish the optimality of A without knowing what its (optimal) running-time
is. Furthermore, the P-sv-NP Question boils down to determining the running
time of a single explicitly presented algorithm (i.e., the optimal algorithm A).
Finally, we note that the theorem as stated refers only to models of computation
that have machines that can emulate a given number of steps of other machines
with a constant overhead. We mention that in most natural models the overhead
of such emulation is at most poly-logarithmic in the number of steps, in which
case it holds that tA(x) = Õ(tA′(x) + p(|x|)).
Proof sketch: Fixing R, we let M be a polynomial-time algorithm that decides
membership in R, and let p be a polynomial bounding the running-time of M . We
11 That is, we need to verify that on input x, after obtaining the answers σ1, ..., σi−1

to the first i − 1 queries, the ith query made by the reduction equals zi.
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present the following algorithm A that merely runs all possible search algorithms
“in parallel” and checks the results provided by each of them (using M), halting
whenever it obtains a correct solution.

Since there are infinitely many possible algorithms, we should clarify what
we mean by “running them all in parallel”. What we mean is to run them at
different rates such that the infinite sum of rates converges to 1 (or any other
constant). Specifically, we will run the ith possible algorithm at rate 1/(i + 1)2.
Note that a straightforward implementation of this idea may create a significant
overhead, involved in switching frequently from the computation of one machine
to another. Instead we present an alternative implementation that proceeds in
iterations. In the jth iteration, for i = 1, ..., 2j/2, we emulate 2j/(i + 1)2 steps
of the ith machine. Each of these emulations is conducted in one chunk, and
thus the overhead of switching between the various emulations is insignificant
(in comparison to the total number of steps being emulated). We stress that in
case some of these emulations halts with output y, algorithm A invokes M on
input (x, y) and output y if and only if M(x, y) = 1. Furthermore, the verifi-
cation of a solution provided by a candidate algorithm is also emulated at the
expense of its step-count. (Put in other words, we augment each algorithm with
a canonical procedure (i.e., M) that checks the validity of the solution offered
by the algorithm.)

In order to guarantee that A also halts on x ∈ LR, we let it run an exhaustive
search for a solution, in parallel to all searches, and halt with output ⊥ in case
this exhaustive search fails.

Clearly, whenever A(x) outputs y (i.e., y = ⊥) it must hold that (x, y) ∈ R.
To show the optimality of A, we consider an arbitrary algorithm A′ that solves
the search problem of R. Our aim is to show that A is not much slower than
A′. Intuitively, this is the case because the overhead of A results from emulating
other algorithms (in addition to A′), but the total number of emulation steps
wasted (due to these algorithms) is inversely proportional to the rate of algorithm
A′, which in turn is exponentially related to the length of the description of A′.
The punch-line is that since A′ is fixed, the length of its description is a constant.

5.3 Promise Problems

Promise problems are a natural generalization of decision problems (and search
problems can be generalized in a similar manner). In fact, in many cases, promise
problems provide the more natural formulation of a decision problem. Formally,
promise problems refer to a three-way partition of the set of all strings into
yes-instances, no-instances, and instances that violate the promise. A potential
decider is only required to distinguish yes-instances from no-instances, and is
allowed arbitrary behavior on inputs that violate the promise. Standard decision
problems are obtained as a special case by postulating that all inputs are allowed
(i.e., the promise is trivial).

In contrary to the common perception, promise problems are no offshoot
for abnormal situations, but are rather the norm: Indeed, the standard and
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natural presentation of natural decision problems is actually in terms of promise
problems, although the presentation rarely refers explicitly to the terminology of
promise problems. Consider a standard entry in [3] (or any similar compendium)
reading something like “given a planar graph, determine whether or not ...”. A
more formal statement will refer to strings that represent planar graphs. Either
way, the natural formulation actually refers to a promise problem (where the
promise in this case is that the input is a planar graph).

We comment that the discrepancy between the intuitive promise problem
formulation and the standard formulation in terms of decision problems can be
easily bridged in the case that there exists an efficient algorithm for determin-
ing membership in the “promise set” (i.e., the set of instances that satisfy the
promise). In this case, the promise problem is computationally equivalent to de-
ciding membership in the set of yes-instances. However, in case the promise set
is not tractable, the terminology of promise problems is unavoidable. Examples
include the notion of “unique solutions”, the formulation of “gap problems” that
capture various approximation tasks, and complete problems for various prob-
abilistic complexity classes. For a recent survey on promise problems and their
applications, the interested reader is referred to [5].

6 A Brief Overview of Complexity Theory

(The following text was originally written as a brief overview of complexity the-
ory, intended for the novice. It can also be used as a basis for communicating
the essence of complexity theory to the outside (i.e., to scientists in other dis-
ciplines and even to the general interested public). Thus, unlike the rest of this
essay, which is intended for the teacher, this section is intended for the student
(or for other “outsiders” that the teacher may wish to address). The text starts
with an overview of the P-vs-NP Question and the theory of NP-completeness,
repeating themes that were expressed in the previous sections. Still, in light of
the different potential uses of this text, I preferred not to eliminate this part of
the overview.)

Complexity Theory is concerned with the study of the intrinsic complexity
of computational tasks. Its “final” goals include the determination of the com-
plexity of any well-defined task. Additional “final” goals include obtaining an
understanding of the relations between various computational phenomena (e.g.,
relating one fact regarding computational complexity to another). Indeed, we
may say that the former type of goals is concerned with absolute answers re-
garding specific computational phenomena, whereas the latter type is concerned
with questions regarding the relation between computational phenomena.

Interestingly, the current success of Complexity Theory in coping with the
latter type of goals has been more significant. In fact, the failure to resolve
questions of the “absolute” type, led to the flourishing of methods for coping
with questions of the “relative” type. Putting aside for a moment the frustration
caused by the failure, we must admit that there is something fascinating in
the success: in some sense, establishing relations between phenomena is more
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revealing than making statements about each phenomenon. Indeed, the first
example that comes to mind is the theory of NP-completeness. Let us consider
this theory, for a moment, from the perspective of these two types of goals.

Complexity Theory has failed to determine the intrinsic complexity of tasks
such as finding a satisfying assignment to a given (satisfiable) propositional for-
mula or finding a 3-coloring of a given (3-colorable) graph. But it has established
that these two seemingly different computational tasks are in some sense the
same (or, more precisely, are computationally equivalent). We find this success
amazing and exciting, and hope that the reader shares our feeling. The same
feeling of wonder and excitement is generated by many of the other discoveries
of Complexity Theory. Indeed, the reader is invited to join a fast tour of some of
the other questions and answers that make up the field of Complexity Theory.

We will indeed start with the “P versus NP Question”. Our daily experience
is that it is harder to solve a problem than it is to check the correctness of a
solution (e.g., think of either a puzzle or a research problem). Is this experience
merely a coincidence or does it represent a fundamental fact of life (or a property
of the world)? Could you imagine a world in which solving any problem is not
significantly harder than checking a solution to it? Would the term “solving a
problem” not lose its meaning in such a hypothetical (and impossible in our
opinion) world? The denial of the plausibility of such a hypothetical world (in
which “solving” is not harder than “checking”) is what “P different than NP”
actually means, where P represents tasks that are efficiently solvable and NP
represents tasks for which solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the
task of proving theorems versus the task of verifying the validity of proofs.
Indeed, finding proofs is a special type of the aforementioned task of “solving a
problem” (and verifying the validity of proofs is a corresponding case of checking
correctness). Again, “P different than NP” means that there are theorems that
are harder to prove than to be convinced of correctness when presented with
a proof. This means that the notion of a proof is meaningful (i.e., that proofs
do help when trying to be convinced of the correctness of assertions). Here
NP represents sets of assertions that can be efficiently verified with the help
of adequate proofs, and P represents sets of assertions that can be efficiently
verified from scratch (i.e., without proofs).

In light of the foregoing discussion it is clear that the P-versus-NP Question is
a fundamental scientific question of far-reaching consequences. The fact that this
question seems beyond our current reach led to the development of the theory of
NP-completeness. Loosely speaking, this theory identifies a set of computational
problems that are as hard as NP. That is, the fate of the P-versus-NP Question
lies with each of these problems: if any of these problems is easy to solve then
so are all problems in NP. Thus, showing that a problem is NP-complete pro-
vides evidence to its intractability (assuming, of course, “P different than NP”).
Indeed, demonstrating NP-completeness of computational tasks is a central tool
in indicating hardness of natural computational problems, and it has been used
extensively both in computer science and in other disciplines. NP-completeness
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indicates not only the conjectured intractability of a problem but rather also
its “richness” in the sense that the problem is rich enough to “encode” any
other problem in NP. The use of the term “encoding” is justified by the exact
meaning of NP-completeness, which in turn is based on establishing relations
between different computational problems (without referring to their “absolute”
complexity).

The foregoing discussion of the P-versus-NP Question also hints to the im-
portance of representation, a phenomenon that is central to complexity theory.
In general, complexity theory is concerned with problems the solutions of which
are implicit in the problem’s statement. That is, the problem contains all neces-
sary information, and one merely needs to process this information in order to
supply the answer.12 Thus, complexity theory is concerned with manipulation of
information, and its transformation from one representation (in which the infor-
mation is given) to another representation (which is the one desired). Indeed, a
solution to a computational problem is merely a different representation of the
information given; that is, a representation in which the answer is explicit rather
than implicit. For example, the answer to the question of whether or not a given
Boolean formula is satisfiable is implicit in the formula itself (but the task is to
make the answer explicit). Thus, complexity theory clarifies a central issue re-
garding representation; that is, the distinction between what is explicit and what
is implicit in a representation. Furthermore, it even suggests a quantification of
the level of non-explicitness.

In general, complexity theory provides new viewpoints on various phenomena
that were considered also by past thinkers. Examples include the aforementioned
concepts of proofs and representation as well as concepts like randomness, knowl-
edge, interaction, secrecy and learning. We next discuss some of these concepts
and the perspective offered by complexity theory.

The concept of randomness has puzzled thinkers for ages. Their perspective
can be described as ontological: they asked “what is randomness” and wondered
whether it exist at all (or is the world deterministic). The perspective of com-
plexity theory is behavioristic: it is based on defining objects as equivalent if they
cannot be told apart by any efficient procedure. That is, a coin toss is (defined
to be) “random” (even if one believes that the universe is deterministic) if it is
infeasible to predict the coin’s outcome. Likewise, a string (or a distribution of
strings) is “random” if it is infeasible to distinguish it from the uniform distri-
bution (regardless of whether or not one can generate the latter). Interestingly,
randomness (or rather pseudorandomness) defined this way is efficiently expand-
able; that is, under a reasonable complexity assumption (to be discussed next),
short pseudorandom strings can be deterministically expanded into long pseu-
dorandom strings. Indeed, it turns out that randomness is intimately related to
intractability. Firstly, note that the very definition of pseudorandomness refers to

12 In contrast, in other disciplines, solving a problem may require gathering informa-
tion that is not available in the problem’s statement. This information may either
be available from auxiliary (past) records or be obtained by conducting new experi-
ments.



On Teaching the Basics of Complexity Theory 371

intractability (i.e., the infeasibility of distinguishing a pseudorandomness object
from a uniformly distributed object). Secondly, as hinted above, a complexity
assumption that refers to the existence of functions that are easy to evaluate
but hard to invert (called one-way functions) imply the existence of determinis-
tic programs (called pseudorandom generators) that stretch short random seeds
into long pseudorandom sequences. In fact, it turns out that the existence of
pseudorandom generators is equivalent to the existence of one-way functions.

Complexity Theory offers its own perspective on the concept of knowledge
(and distinguishes it from information). It views knowledge as the result of a
hard computation. Thus, whatever can be efficiently done by anyone is not con-
sidered knowledge. In particular, the result of an easy computation applied to
publicly available information is not considered knowledge. In contrast, the value
of a hard to compute function applied to publicly available information is knowl-
edge, and if somebody provides you with such a value then it has provided you
with knowledge. This discussion is related to the notion of zero-knowledge inter-
actions, which are interactions in which no knowledge is gained. Such interactions
may still be useful, because they may assert the correctness of specific knowledge
that was provided beforehand.

The foregoing paragraph has explicitly referred to interaction. It has pointed
one possible motivation for interaction: gaining knowledge. It turns out that
interaction may help in a variety of other contexts. For example, it may be
easier to verify an assertion when allowed to interact with a prover rather than
when reading a proof. Put differently, interaction with some teacher may be
more beneficial than reading any book. We comment that the added power of
such interactive proofs is rooted in their being randomized (i.e., the verification
procedure is randomized), because if the verifier’s questions can be determined
beforehand then the prover may just provide the transcript of the interaction as
a traditional written proof.

Another concept related to knowledge is that of secrecy: knowledge is some-
thing that one party has while another party does not have (and cannot feasibly
obtain by itself) – thus, in some sense knowledge is a secret. In general, com-
plexity theory is related to Cryptography, where the latter is broadly defined as
the study of systems that are easy to use but hard to abuse. Typically, such
systems involve secrets, randomness and interaction as well as a complexity gap
between the ease of proper usage and the infeasibility of causing the system to
deviate from its prescribed behavior. Thus, much of Cryptography is based on
complexity theoretic assumptions and its results are typically transformations
of relatively simple computational primitives (e.g., one-way functions) into more
complex cryptographic applications (e.g., a secure encryption scheme).

We have already mentioned the context of learning when referring to learn-
ing from a teacher versus learning from a book. Recall that complexity theory
provides evidence to the advantage of the former. This is in the context of gain-
ing knowledge about publicly available information. In contrast, computational
learning theory is concerned with learning objects that are only partially avail-
able to the learner (i.e., learning a function based on its value at a few random
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locations or even at locations chosen by the learner). Complexity Theory sheds
light on the intrinsic limitations of learning (in this sense).

Complexity Theory deals with a variety of computational tasks. We have
already mentioned two fundamental types of tasks: searching for solutions (or
“finding solutions”) and making decisions (e.g., regarding the validity of asser-
tion). We have also hinted that in some cases these two types of tasks can be
related. Now we consider two additional types of tasks: counting the number of
solutions and generating random solutions. Clearly, both the latter tasks are at
least as hard as finding arbitrary solutions to the corresponding problem, but
it turns out that for some natural problems they are not significantly harder.
Specifically, under some natural conditions on the problem, approximately count-
ing the number of solutions and generating an approximately random solution
is not significantly harder than finding an arbitrary solution.

Having mentioned the notion of approximation, we mention that the study
of the complexity of finding approximate solutions has also received a lot of
attention. One type of approximation problems refers to an objective function
defined on the set of potential solutions. Rather than finding a solution that
attains the optimal value, the approximation task consists of finding a solution
that obtains an “almost optimal” value, where the notion of “almost optimal”
may be understood in different ways giving rise to different levels of approxi-
mation. Interestingly, in many cases even a very relaxed level of approximation
is as difficult to achieve as the original (exact) search problem (i.e., finding an
approximate solution is as hard as finding an optimal solution). Surprisingly,
these hardness of approximation results are related to the study of probabilis-
tically checkable proofs, which are proofs that allow for ultra-fast probabilistic
verification. Amazingly, every proof can be efficiently transformed into one that
allows for probabilistic verification based on probing a constant number of bits
(in the alleged proof). Turning back to approximation problems, we note that in
other cases a reasonable level of approximation is easier to achieve than solving
the original (exact) search problem.

Approximation is a natural relaxation of various computational problems.
Another natural relaxation is the study of average-case complexity, where the
“average” is taken over some “simple” distributions (representing a model of
the problem’s instances that may occur in practice). We stress that, although
it was not stated explicitly, the entire discussion so far has referred to “worst-
case” analysis of algorithms. We mention that worst-case complexity is a more
robust notion than average-case complexity. For starters, one avoids the contro-
versial question of what are the instances that are “important in practice” and
correspondingly the selection of the class of distributions for which average-case
analysis is to be conducted. Nevertheless, a relatively robust theory of average-
case complexity has been suggested, albeit it is far less developed than the theory
of worst-case complexity.

In view of the central role of randomness in complexity theory (as evident,
say, in the study of pseudorandomness, probabilistic proof systems, and cryptog-
raphy), one may wonder as to whether the randomness needed for the various
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applications can be obtained in real-life. One specific question, which received
a lot of attention, is the possibility of “purifying” randomness (or “extracting
good randomness from bad sources”). That is, can we use “defected” sources of
randomness in order to implement almost perfect sources of randomness. The
answer depends, of course, on the model of such defected sources. This study
turned out to be related to complexity theory, where the most tight connection
is between some type of randomness extractors and some type of pseudorandom
generators.

So far we have focused on the time complexity of computational tasks, while
relying on the natural association of efficiency with time. However, time is not
the only resource one should care about. Another important resource is space:
the amount of (temporary) memory consumed by the computation. The study of
space complexity has uncovered several fascinating phenomena, which seem to
indicate a fundamental difference between space complexity and time complexity.
For example, in the context of space complexity, verifying proofs of validity of
assertions (of any specific type) has the same complexity as verifying proofs of
invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour
of some mountain tops, and dizziness is to be expected. Needless to say, a good
graduate course in complexity theory should consist of climbing some of these
mountains by foot, step by step, and stopping to look around and reflect.

Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute results are
not known for many of the “big questions” of complexity theory (most notably
the P-versus-NP Question). However, several highly non-trivial absolute results
have been proved. For example, it was shown that using negation can speed-up
the computation of monotone functions (which do not require negation for their
mere computation). In addition, many promising techniques were introduced
and employed with the aim of providing a “low-level” analysis of the progress
of computation. However, the focus of this overview was on the connections
among various computational problems and notions, which may be viewed as a
“high-level” study of computation.

Historical Notes

Many sources provide historical accounts of the developments that led to the
formulation of the P vs NP Problem and the development of the theory of NP-
completeness (see, e.g., [3]). We thus refrain from attempting to provide such an
account.

One technical point that we mention is that the three “founding papers” of
the theory of NP-completeness (i.e., [1, 6, 8]) refer to the three different terms of
reductions used above. Specifically, Cook used the general notion of polynomial-
time reduction [1], often referred to as Cook-reductions. The notion of Karp-
reductions originates from Karp’s paper [6], whereas its augmentation to search
problems originates from Levin’s paper [8]. It is worth noting that unlike Cook
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and Karp’s works, which treat decision problems, Levin’s work is stated in terms
of search problems.

The existence of NP-sets that are neither in P nor NP-complete (i.e., Theo-
rem 4) was proven by Ladner [7], Theorem 5 was proven by Selman [9], and the
existence of optimal search algorithms for NP-relations (i.e., Theorem 6) was
proven by Levin [8]. (Interestingly, the latter result was proved in the same pa-
per in which Levin presented the discovery of NP-completeness, independently of
Cook and Karp.) Promise problems were explicitly introduced by Even, Selman
and Yacobi [2].
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Abstract. The notion of state is fundamental to the design and analysis
of virtually all computational systems. The Myhill-Nerode Theorem of
Finite Automata theory—and the concepts underlying the Theorem—
is a source of sophisticated fundamental insights about a large class
of state-based systems, both finite-state and infinite-state systems. The
Theorem’s elegant algebraic characterization of the notion of state often
allows one to analyze the behaviors and resource requirements of such
systems. This paper reviews the Theorem and illustrates its application
to a variety of formal computational systems and problems, ranging from
the design of circuits, to the analysis of data structures, to the study of
state-based formalisms for machine-learning systems. It is hoped that
this survey will awaken many to, and remind others of, the importance
of the Theorem and its fundamental insights.

A dedication. I decided to contribute this piece to this volume because
Shimon Even is largely—albeit indirectly—responsible for the piece. I
learned about Finite Automata Theory and the Myhill-Nerode Theorem
in a course taught by Shimon at Harvard during his last year of graduate
school and my first. I further learned from associating with Shimon,
during a friendship of more than 42 years, a commitment to effective
teaching and the importance of defending strongly held positions, even
when they run counter to prevailing trends.

1 Introduction

A paean to the Myhill-Nerode Theorem. The notion of state is fundamen-
tal to the design and analysis of virtually all computational systems, from the
sequential circuits that underlie sophisticated hardware, to the semantic models
that enable optimizing compilers, to leading-edge machine-learning concepts, to
the models used in discrete-event simulation. Decades of experience with state-
based systems have taught that all but the simplest display a level of complexity
that makes them hard—conceptually and/or computationally—to design and
analyze. One brilliant candle in this gloomy scenario is the Myhill-Nerode Theo-
rem, which supplies a rigorous, mathematical, analogue of the following informal
characterization of the notion “state.”

The state of a system comprises that fragment of its history that allows
it to behave correctly in the future.

O. Goldreich et al. (Eds.): Shimon Even Festschrift, LNCS 3895, pp. 375–398, 2006.
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Superficially, it may appear that this definition of “state” is of no greater oper-
ational significance than is the foundational identification of the number eight
with the infinitude of sets that contain eight elements. This appearance is illu-
sory. The Myhill-Nerode Theorem turns out to be a conceptual and technical
powerhouse when analyzing a surprising range of problems concerning the state-
transition systems that occur in so many guises within the field of computation.
Indeed, although the Theorem resides most naturally within the theory of Finite
Automata—it first appeared in [13]; an earlier, weaker version appeared in [12];
the most accessible presentation appeared in [15]—it has manifold lessons for
the analysis of many problems associated with any state-transition system, even
those having infinitely many states.

It is my goal to back up the preceding praise for the Myhill-Nerode Theorem
by reviewing both the Theorem and a sampler of its applications. In subsequent
sections, I review the work of several researchers from the 1960’s, whose work
on a variety of problems relating to state-transition systems can be viewed as
applying the fundamental insights that underlie the Theorem. While the Theo-
rem originated as a cornerstone of the theory of Finite Automata,1 several of the
systems we consider here are quite removed from the standard Finite Automaton
model.

A pedagogical ax to grind. Permit me now to step away from technical
matters to pedagogical ones. I argue here via case studies that the Myhill-Nerode
Theorem, in the insights that it supplies and the formal settings that it suggests,
is one of the real gems of the foundational branch of theoretical computer sci-
ence. To the extent that this evaluation is accurate, it is regrettable that the
Theorem, and its algebraic message and insights, have disappeared from virtu-
ally all modern introductory texts on “computation theory,” despite that fact
that all of these begin with a section on finite automata. For illustration, as I
was examining texts for my introductory course in this area, I perused [3, 4, 8, 9,
11, 18] and found the Theorem only in the first edition of [4]; its second edition,
[3], no longer presents it! While it is not my intention to speculate at length
on why the Theorem has been systematically excluded from the aforementioned
texts, I suspect that it is due to a narrowing of attitudes over the years/decades
about what constitutes the foundational branch of theoretical computer science.
Whereas earlier attitudes identified “computation theory” with all approaches to
a mathematical foundation—as defined in texts by some compendium of loosely
related material from the theories of automata, formal languages, computability,
and complexity—modern attitudes seem to posit the overriding importance of
complexity theory (even while texts continue to include a smattering of material
from the three other theories). Thus, understanding the essential nature of com-
putation, as manifest in the resources required to compute various functions, has
largely displaced (in the introductory course, at least) the attempt to develop
mathematical tools for understanding the structures that underlie the hardware

1 In my opinion, only the Kleene-Myhill Theorem, which establishes the equivalence
between Finite Automata and “Regular Expressions,” rivals the Myhill-Nerode The-
orem for importance in the theory of Finite Automata.
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and software systems that we build and use. I believe that this trend is unsound,
both technically and pedagogically. We present embryonic computer scientists
with abstract models that we do little to motivate, and we largely deprive them
of exposure to foundational material that is likely to be at least as meaningful
to them in their professional lives as much of the esoterica that they are exposed
to in what for many is their one and only course on “computation theory.”

It is incumbent on me to justify my claims about the Myhill-Nerode The-
orem—and, thereby, the more general claims I have just made. I do this by
presenting the Theorem and a sampler of its applications. I acknowledge freely
that my choice of material—as, perhaps, my position—is personal and eccentric.
That said, I hope that the reader will at least find this essay provocative.

A roadmap. We begin by introducing, in Section 2, a very general, unstruc-
tured, model of state-transition system, that we call the Online Automaton.
This model is intended to capture those aspects of a state-transition system
that are captured by the Myhill-Nerode Theorem and its underlying concepts.
We next turn in Section 3 to Finite Automata, and we develop the Myhill-Nerode
Theorem (and its proof) in this, its “natural domain.” Section 4 presents two
applications of the Theorem to finite-state systems. In Section 4.1, we describe
how to use the Theorem to prove that a language is not regular—i.e., is not
acceptable by a Finite Automaton. We further argue in Section 4.1.2 that the
proofs of nonregularity that emerge from the technique proposed in all modern
texts—which use the so-called Pumping Lemma for regular languages—are never
shorter and are seldom as perspicuous as the proofs advocated in Section 4.1.
We invoke Occam’s Razor2 to argue for the reinstatement of the Myhill-Nerode
Theorem as the fundamental technique for proofs of nonregularity. In Section 4.2,
we describe how the Theorem supplies the foundation for the fundamental oper-
ation of “minimizing” a Finite Automaton, by coalescing states that are “equiv-
alent” with respect to the language that the automaton accepts. Importantly
for applications of the theory, such state minimization is purely algorithmic and
requires no understanding of what the automaton does. We next leave the “nat-
ural domain” of the Theorem and describe three of its conceptual applications
to state-transition systems that are not Finite Automata. Our first “indirect”
application, in Section 5.1, describes a result from [6] that, informally, applies
the Theorem to Online Automata that accept nonregular languages. This result
quantitatively sharpens the Theorem’s characterization of nonregular languages
as those having infinite “memory requirements,” by supplying a lower bound on
these “requirements.” The next study we review, in Section 5.2, lends structure
to the infinitely many states of an Online Automaton, by specifying the organi-
zation of the memory that the states control. We arrive, thereby, at the notion
of a multi-tape multi-dimensional online Turing Machine. Now, such models are
not in vogue today, largely because they do not faithfully model the structure
of digital computers and their peripherals. However, if one views such “ma-
chines” as stylized programs that manipulate multiple data structures—a linear
“tape” is a linear list, a two-dimensional “tape” is an orthogonal list, etc.—then

2 “Entia non sunt multiplicanda praeter necessitatem” (William of Occam, 14th cent.)
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one can use such a model to advantage to prove nontrivial facts about data
structures. The result that we adapt from [2] exposes the impact of memory
structure on computational efficiency (specifically, time complexity), within the
context of a simple data-retrieval problem. Our final “indirect” application of
the Theorem, in Section 6, has implications for some of the voluminous work
on probabilistic state-transition systems, such as are quite popular within the
artificial-intelligence community. We present one of the most striking results from
[14]: Even if Finite Automata are modified to make their state transitions prob-
abilistic, the resulting model still accepts only regular sets when the probability
that an input is accepted is always bounded away from the threshold required for
acceptance. I close in Section 7 with a closing polemic advocating reinstituting
the Myhill-Nerode Theorem within our theoretical computer science curricula.

The thread that connects all of the work we survey is the Myhill-Nerode
Theorem and its underlying concepts. We hope that we have done justice to
this work and that, after reading this piece, the reader will understand—and,
hopefully, sympathize with—our claim that the Myhill-Nerode Theorem is a
treasure that should be passed on to subsequent generations.

2 Online Automata and Their Languages

Languages. Let Σ be a finite set of (atomic) symbols (or, an alphabet). We
denote by Σ� the set of all finite-length strings of elements of Σ—including the
null string ε, which is the unique string of length 0. A word over Σ is any
element of Σ�; a language over Σ is any subset L ⊆ Σ�.

Equivalence relations on Σ�, specifically, right-invariant ones, cast a broad
shadow in the theory, hence, in our survey.

An equivalence relation ≡ on Σ� is right-invariant if, for all z ∈ Σ�, xz ≡ yz
whenever x ≡ y.

Our particular focus will be on the following specific (right-invariant) equiv-
alence relation on Σ�, which is defined in terms of a given language L ⊆ Σ�.

For all x, y ∈ Σ� : [x ≡L y] iff (∀z ∈ Σ�)[[xz ∈ L] ⇔ [yz ∈ L]]. (1)

The following important result is a simple exercise.

Lemma 1 For all alphabets Σ and all languages L ⊆ Σ�, the equivalence rela-
tion ≡L is right-invariant.

Automata. An online automaton M is specified as follows:
M = (Q, Σ, δ, q0, F ), where

– Q is a (finite or infinite) set of states;
– Σ is a finite alphabet;
– δ is the state-transition function: δ : Q × Σ −→ Q;
– q0 is M ’s initial state; it is the state M is in when you first “switch it on;”
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– F ⊆ Q is the set of final (or, accepting) states; these are the states that
specify M ’s “response to” each input string x ∈ Σ�.

In order to make the OA model dynamic (so that it can “accept” a language),
we need to talk about how an OA M responds to strings, not just to single
symbols. We therefore extend the state-transition function δ to operate on Q ×
Σ�, rather than just on Q × Σ. It is crucial that our extension truly extend δ,
i.e., that it agree with δ on strings of length 1 (which can, of course, be viewed
as symbols). We call our extended function δ̂ and define it via the following
induction. For all q ∈ Q:

δ̂(q, ε) = q

(∀σ ∈ Σ, ∀x ∈ Σ�) δ̂(q, σx) = δ̂(δ(q, σ), x).

The first equation asserts that M responds only to the stimuli embodied by
non-null strings. In the second equation, the unadorned “δ” highlights the fact
that δ̂ is an extension of δ.

We can finally define the language accepted (or, recognized) by M (some-
times called the “behavior” of M):

L(M) def= {x ∈ Σ� | δ̂(q0, x) ∈ F}.

Since it can cause no confusion to “overload” the semantics of δ, we stop
embellishing the extended δ with a hat and just write δ : Q × Σ� −→ Q.

In analogy with the equivalence relation ≡L of Eq. 1, which is associated with
a language L, we associate with each OA M the following equivalence relation
on Σ�.

For all x, y ∈ Σ� : [x ≡M y] iff [δ(q0, x) = δ(q0, y)]. (2)

The following is an immediate consequence of how we extended the state-
transition function δ to Q × Σ�, in particular, the fact that δ(q0, xz) =
δ(δ(q0, x), z).

Lemma 2 For each OA M = (Q, Σ, δ, q0, F ):
(a) the equivalence relation ≡M is right-invariant;
(b) (∀x, y ∈ Σ�) [x ≡M y] iff [x ≡L(M) y].

3 Finite Automata and the Myhill-Nerode Theorem

A finite automaton (FA, for short) is an OA, M = (Q, Σ, δ, q0, F ), whose
state-set Q is finite. A language L is regular iff there is an FA M such that
L = L(M).

We now prepare for our presentation of the Myhill-Nerode Theorem, which
supplies a rigorous mathematical correspondent of the notion of “state.” We
begin with some basic definitions, facts, and notation. Let ≡ be any equivalence
relation on Σ�.
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– For each x ∈ Σ�, the ≡-class that x belongs to is [x]≡
def= {y ∈ Σ� | x ≡ y}.

(When the subject relation ≡ is clear from context, we simplify notation by
writing [x] for [x]≡.)

– The classes of ≡ partition Σ�.
– The index of ≡ is the number of classes that it partitions Σ� into.

Theorem 3 ([12, 13, 15]). (The Myhill-Nerode Theorem)
The following statements about a language L ⊆ Σ� are equivalent.

1. L is regular.
2. L is the union of some of the equivalence classes of a right-invariant equiv-

alence relation over Σ� of finite index.
3. The right-invariant equivalence relation, ≡L of Eq. 1 has finite index.

Note. The earliest version of the Theorem, in [12], uses congruences—i.e.,
equivalence relations that are both right- and left-invariant.

Proof. We prove the (logical) equivalence of the Theorem’s three statements by
verifying the three cyclic implications: statement 1 implies statement 2, which
implies statement 3, which implies statement 1.

(1) ⇒ (2). Say that the language L is regular. There is, then, a FA M =
(Q, Σ, δ, q0, F ) such that L = L(M). Then the right-invariant equivalence rela-
tion ≡M of Eq. 2 clearly has index no greater than |Q|. Moreover, L is the union
of some of the classes of relation ≡M :

L = {x ∈ Σ� | δ(q0, x) ∈ F} =
⋃

f∈F

{x ∈ Σ� | δ(q0, x) = f}.

(2) ⇒ (3). We claim that if L is “defined” via some (any) finite-index right-
invariant equivalence relation, ≡, on Σ�, in the sense of statement 2, then the
specific right-invariant equivalence relation ≡L has finite index. We verify the
claim by showing that the relation ≡ must refine relation ≡L, in the sense that
every equivalence class of ≡ is totally contained in some equivalence class of ≡L.
To see this, consider any strings x, y ∈ Σ� such that x ≡ y. By right invariance,
then, for all z ∈ Σ�, we have xz ≡ yz. Since L is, by assumption, the union of
entire classes of relation ≡, we must have

[xz ∈ L] if, and only if, [yz ∈ L].

We thus have
[x ≡ y] ⇒ [x ≡L y].

Since relation ≡ has only finitely many classes, and since each class of relation
≡ is a subset of some class of relation ≡L, it follows that relation ≡L has finite
index.

(3) ⇒ (1). Say that L is the union of some of the classes of the finite-index
right-invariant equivalence relation ≡L on Σ�. Let the distinct classes of ≡L

be [x1], [x2], . . . , [xn], for some n strings xi ∈ Σ�. (Note that, because of the
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transitivity of relation ≡L, we can identify a class uniquely via any one of its
constituent strings. This works, of course, for any equivalence relation.) We claim
that these classes form the states of an FA M = (Q, Σ, δ, q0, F ) that accepts L.
To wit:

1. Q = {[x1], [x2], . . . , [xn]}.
This set is finite because ≡L has finite index.

2. For all x ∈ Σ� and all σ ∈ Σ, define δ([x], σ) = [xσ].
The right-invariance of relation ≡L guarantees that δ is a well-defined func-
tion.

3. q0 = [ε].
M ’s start state corresponds to its having read nothing.

4. F = {[x] | x ∈ L}

One verifies by an easy induction that M is a well-defined FA that accepts L.

4 Applying Myhill-Nerode Concepts to FA’s

4.1 Proving that Languages Are Nonregular

FA’s are very limited in their computing power due to the finiteness of their
memories, i.e., of their sets of states. Indeed, the standard way to expose the
limitations of FA’s—by proving that a language L is not regular—is to establish
somehow that the structure of L requires distinguishing among infinitely many
mutually distinct situations.

4.1.1. The Continuation Lemma and Fooling Sets. Given the conceptual
parsimony and power of Theorem 3, it is not surprising that the Theorem affords
one a simple, yet powerful tool for proving that a language is not regular. This
tool is encapsulated in the following corollary, which follows immediately from
the equivalence of statements (1) and (3) in the Theorem. For reasons that
we hope will become suggestive imminently, we refer to the corollary as “The
Continuation Lemma.” We maintain that the ensuing development should be
viewed as the primary tool for proving that a language is not regular.

Lemma 4 (The Continuation Lemma)
Let L ⊆ Σ� be an infinite regular language. Every sufficiently large set of words
over Σ contains at least two words x, y such that x ≡L y.

The Continuation Lemma has a natural interpretation in terms of FA’s,
namely, that an FA M has no “memory of the past” other than its
current state. Specifically, if strings x and y lead M to the same state
(from its initial state)—i.e., if x ≡M y—then no continuation/extension
of the input string will ever allow M to determine which of x and y it
actually read.
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One applies the Continuation Lemma to the problem of showing that an
infinite3 language L ⊆ Σ� is not regular by constructing a fooling set for L,
i.e., an infinite set of words no two of which are equivalent with respect to L.
In other words, an infinite set S ⊆ Σ� is a fooling set for L if for every pair of
words x, y ∈ S, there exists a word z ∈ Σ� such that precisely one of xz and yz
belongs to L.

This technique has a natural interpretation in terms of FA’s. Since any
FA M has only finitely many states, any infinite set of words must (by the
pigeonhole principle) always contain two, x and y, that are indistinguish-
able to M , in the sense that x ≡M y (so that x ≡L(M) y; cf. Lemma 2).
By the FA version of the Continuation Lemma, no continuation z can
ever cause M to distinguish between x and y.

We now consider a few sample proofs of the nonregularity of languages, which
suggest how direct and simple such proofs can be when they are based on the
Continuation Lemma and fooling sets.

Application 1. The language4 L1 = {anbn | n ∈ N} ⊂ {a, b}� is not
regular.

We claim that the set S1 = {ak | k ∈ N} is a fooling set for L1. To see this,
note that, for any distinct words ai, aj ∈ S1, we have aibi ∈ L1 while ajbi ∈ L1;
hence, ai ≡L1 aj . By Lemma 4, L1 is not regular. ��

Application 2. The language L2 = {ak | k is a perfect square} is not reg-
ular.

This application requires a bit of subtlety. We claim that L2 is a fooling set
for itself! To see this, consider any distinct words ai2 , aj2 ∈ L2, where j > i.
On the one hand, ai2a2i+1 = ai2+2i+1 = a(i+1)2 ∈ L2; on the other hand,
aj2

a2i+1 = aj2+2i+1 ∈ L2, because j2 < j2+2i+1 < (j+1)2; hence, ai2 ≡L2 aj2
.

By Lemma 4, L2 is not regular. ��
Applications 3 and 4. The language5

L3 = {x ∈ {0, 1}� | x reads the same forwards and backwards;
symbolically, x = xR}

(whose words are often called “palindromes”), and the language

L4 = {x ∈ {0, 1}� | (∃y ∈ {0, 1}�)[x = yy]}

(whose words are often called “squares”), are not regular.
We claim that the set S3 = {10k1 | k ∈ N} is a fooling set for both L3 and

L4. To see this, consider any pair of distinct words, 10i1 and 10j1, from S3.
On the one hand, 10i110i1 ∈ L3 ∩ L4; on the other hand, 10j110i1 ∈ L3 ∪ L4;
hence, 10i1 ≡L3 10j1, and 10i1 ≡L4 10j1. By Lemma 4, neither L3 nor L4 is
regular. ��
3 Easily, every finite language is regular; cf. [4].
4 N denotes the positive integers. an denotes a string of n occurrences of string (or

symbol) a.
5 xR denotes string x written backwards; e.g., (σ1σ2 · · ·σn−1σn)R = σnσn−1 · · ·σ2σ1.
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4.1.2. The Pumping Lemma for Regular Languages. Inexplicably to
me, most texts shun the proof strategy of Section 4.1.1, in favor of the more
cumbersome—or, at least, never less cumbersome—use of the so-called Pump-
ing Lemma for Regular Languages.

The phenomenon of “pumping” that underlies the Pumping Lemma is a
characteristic of any finite closed system. Consider, for instance, any finite semi-
group6, S = {α1, α2, . . . , αn}. Since there are only finitely many distinct products
in any sequence of the form αi1 , αi1αi2 , αi1αi2αi3 , . . . , where each αij ∈ S, there
must exist two products in the sequence, say αi1αi2 · · ·αik

and αi1αi2 · · ·αik
αik+1

· · ·αik+�
such that

αi1αi2 · · ·αik
= αi1αi2 · · ·αik

αik+1 · · ·αik+�

within the semigroup. By associativity, then, for all h ∈ N,

αi1αi2 · · ·αik
= αi1αi2 · · ·αik

(αik+1 · · ·αik+�
)h,

where the power notation implies iterated multiplication within the semigroup.
Within the context of FA’s, the phenomenon of “pumping” manifests itself

as follows. Focus on an arbitrary FA M = (Q, Σ, δ, q0, F ). Any word w ∈ Σ�

of length7 �(w) ≥ |Q| can be parsed into the form w = xy, where y = ε,8 in
such a way that δ(q0, x) = δ(q0, xy). Since M is deterministic—i.e., since δ is a
function—for all h ∈ N,

δ(q0, x) = δ(q0, xyh), (3)

where, as earlier, the power notation implies iterated concatenation. Since the
“pumping” depicted in Eq. 3 occurs also with words w ∈ Σ� that admit a
continuation z ∈ Σ� that places them in L(M)—i.e., wz ∈ L(M)—we arrive
finally at the Pumping Lemma. (Note the implicit invocation of Lemma 4 in our
argument.)

Lemma 5 (The Pumping Lemma for Regular Languages)
For every infinite regular language L, there exists an integer n ∈ N such that:
Every word w ∈ L of length �(w) ≥ n can be parsed into the form w = xyz,
where �(xy) ≤ n and �(y) > 0, in such a way that, for all h ∈ N, xyhz ∈ L.

The reader should easily see how to use Lemma 5 to prove that sets are
not regular. The technique differs from our fooling set/Continuation Lemma
technique mainly in the new (and nonintrinsic!) requirement that one of the
“fooling” words must be a prefix of the other. I view this extraneous restric-
tion as a sufficient argument not to use Lemma 5 for proofs of nonregularity.
However, a common way of using the Lemma actually mandates looking for un-
desired “pumping” activity, rather than just for a pair of “fooling” words. For
instance, a common pumping-based proof of the nonregularity of the language
L1 of Application 1 notes that the “pumped” word y of Lemma 5:
6 A semigroup is a set of elements that are closed under an associative binary multi-

plication (denoted here by juxtaposition).
7 �(w) denotes the length of the string w.
8 Of course, we could have x = ε.
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1. cannot consist solely of a’s, or else the block of a’s becomes longer than the
block of b’s;

2. cannot consist solely of b’s, or else the block of b’s becomes longer than the
block of a’s;

3. cannot contain both an a and a b, or else the pumped word no longer has
the form “a block of a’s followed by a block of b’s.

Even when one judiciously avoids this three-case argument by invoking the
Lemma’s length limit on the prefix xy, one is inviting/risking excessive com-
plication by seeking a string that pumps. For instance, when proving the non-
regularity of the language L3 of palindromes, one must cope with the fact that
any palindrome does pump about its center. (That is, for any palindrome w and
any integer �, if one parses w into w = xyz, where x and z both have length
�, then, indeed, for all h ∈ N, the word xyhz is a palindrome.) Note that we
are not suggesting that any of the problems we raise is insuperable, only that
they unnecessarily complicate the proof process, hence violate Occam’s Razor.
The danger inherent in using Lemma 5 to prove that a language is not regular
is mentioned explicitly in [9]:

The pumping lemma is difficult for several reasons. Its statement is com-
plicated, and it is easy to go astray in applying it.

We show now that the condition for a language to be regular that is provided
in Lemma 5 is necessary but not sufficient. This contrasts with the necessary and
sufficient condition provided by Theorem 3.

Lemma 6 ([20]) Every string of length > 4 in the nonregular language

L5 = {uuRv | u, v ∈ {0, 1}�; �(u), �(v) ≥ 1}

pumps in the sense of Lemma 5.

Proof. We paraphrase from [20]. Each string in L5 consists of a nonempty even
palindrome followed by another nonempty string. Say first that w = uuRv and
that �(w) ≥ 4. If �(u) = 1, then we can choose the first character of v as the
nonnull “pumping” substring of Lemma 5. (Of course, the “pumped” strings
are uninteresting in this case.) Alternatively, if �(u) > 1, then, since ak is a
palindrome for every k > 1, where a is the first character of u, we can let this
first letter be the nonnull “pumping” substring of Lemma 5. In either case, the
lemma holds.

Notably, the discussion in [20] ends with the following comment.

For a practical test that exactly characterizes regular languages, see the
Myhill-Nerode theorem.

For the record, Theorem 3 provides a simple proof that L5 is not regular. Let
x and y be distinct strings from the infinite language L = (01)(01)�, with �(y) >
�(x). (Strings in L consist of a sequence of one or more instances of 01.) Easily,
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xxR is an even-length palindrome, hence belongs to L5 (with v = ε). However,
one verifies easily that yxR does not begin with an even-length palindrome, so
that yxR ∈ L5. To wit, if one could write yxR in the form uuRv, then:

– u could not end with a 0, since the “center” substring 00 does not occur in
yxR;

– u could not end with a 1, since the unique occurrence of 11 in yxR occurs
to the right of the center of the string.

By Lemma 4, L5 is not regular. ��
For completeness, we end this section with a version of Lemma 5 that supplies

a condition that is both necessary and sufficient for a language to be regular. This
version is rather nonperspicuous and a bit cumbersome, hence, is infrequently
taught.

Lemma 7 ([5]) (The Necessary-and-Sufficient Pumping Lemma)
A language L ⊆ Σ� is regular if, and only if, there exists an integer n ∈ N
such that: Every word w ∈ Σ� of length �(w) ≥ n can be parsed into the form
w = xyz, where �(y) > 0, in such a way that, for all z ∈ Σ�:

– if wz ∈ L, then for all h ∈ N, xyhz ∈ L;
– if wz ∈ L, then for all h ∈ N, xyhz ∈ L;

4.2 Minimizing Finite Automata

Theorem 3 and its proof tell us two important things.

1. The notion of “state” underlying the FA model is embodied in the relations
≡M . More precisely, a state of an FA is a set of input strings that the FA
“identifies,” because—and so that—any two strings in the set are indistin-
guishable with respect to the language the FA accepts.

2. The coarsest—i.e., smallest-index—equivalence relation that “works” is ≡L,
so that this relation embodies the smallest FA that accepts language L.

We can turn the preceding intuition into an algorithm for minimizing the state-
set of a given FA. You can look at this algorithm as starting with any given
equivalence relation that “defines” L (e.g., with any FA that accepts L) and
iteratively “coarsifying” the relation as far as we can, thereby “sneaking” up on
the relation ≡L.

The resulting algorithm for minimizing a FA M = (Q, Σ, δ, q0, F ) essentially
computes the following equivalence relation on M ’s state-set Q. For p, q ∈ Q,

[p ≡δ q] if, and only if (∀x ∈ Σ�)[[δ(p, x) ∈ F ] ⇔ [δ(q, x) ∈ F ]]

This relation says that no input string will allow one to distinguish M ’s being
in state p from M ’s being in state q. One can, therefore, coalesce states p and q
to obtain a smaller FA that accepts L(M). The equivalence classes of ≡δ, i.e.,
the set

{[p]≡δ
| p ∈ Q}
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are, therefore, the states of the smallest FA—call it M̂—that accepts L(M). The
state-transition function δ̂ of M̂ is given by

δ̂([p]≡δ
, σ) = [δ(p, σ)]≡δ

.

Finally, the initial state of M̂ is [q0]≡δ
, and the accepting states are {[p]≡δ

| p ∈
F}. One shows easily that δ̂ is well defined and that L(M̂) = L(M).

We simplify our explanation of how to compute ≡δ by describing an example
concurrently with our description of the algorithm. We start with a very coarse
approximation to ≡δ and iteratively improve the approximation. Fig. 1 presents
the FA

M = ({a, b, c, d, f, g, h}, {0, 1}, δ, a, {c})
for our example, in tabular form.

M q δ(q, 0) δ(q, 1) q ∈ F ?

(start state) → a b f /∈ F

b g c /∈ F

(final state) → c a c ∈ F

d c g /∈ F

e h f /∈ F

f c g /∈ F

g g e /∈ F

h g c /∈ F

Fig. 1. The FA M that we minimize.

Our initial partition9 of Q is Q − F, F , to indicate that the null string ε
witnesses the fact that no accepting state is equivalent to any nonaccepting
state. This yields the initial partition of M ’s states:

[a, b, d, e, f, g, h]1, [c]1

(The subscript “1” indicates that this is the first discriminatory step). State c,
being the unique final state, is not equivalent to any other state.

Inductively, we now look at the current, time-t, partition and try to “break
apart” time-t blocks. We do this by feeding pairs of states in the same block single
input symbols. If any symbol leads states p and q to different blocks, then, by
induction, we have found a string x that discriminates between them. In detail,
say that δ(p, σ) = r and δ(q, σ) = s. If there is a string x that discriminates
between states r and s—by showing them not to be equivalent under ≡δ—then
9 Recalling that partitions and equivalence relations are equivalent notions, we con-

tinue to use notation “[ab · · · z]” to denote the set {a, b, . . . , z} viewed as a block of
a partition (= equivalence class).
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the string σx discriminates between states p and q. In our example, we find that
input “0” breaks the big time-1 block, so that we get the “time 1.5” partition

[a, b, e, g, h]1.5, [d, f ]1.5, [c]

and input “1” further breaks the block down. We end up with the time-2 partition

[a, e]2, [b, h]2, [g]2, [d, f ]2, [c]2

Let’s see how this happens. First, we find that δ(d, 0) = δ(f, 0) = c ∈ F , while
δ(q, 0) /∈ F for q ∈ {a, b, e, g, h}. This leads to the “time-1.5” partition (since we
have thus far used only one of the two input symbols). At this point, input “1”
leads states a and e to block {d, f}, and it leads states b and h to block {c};
it leaves state g in its present block. We thus end up with the indicated time-2
partition. Further single inputs leave this partition unchanged, so it must be the
coarsest partition that preserves L(M).

The preceding sentence invokes the fact that, by a simple induction, if a
partition persists under (i.e., is unchanged by) all single inputs, then it persists
under all input strings. We claim that such a stable partition embodies the
relation ≡M , hence, by Lemma 2, the relation ≡L(M). To see this, consider any
two states, p and q, that belong to the same block of a partition that persists
under all input strings. Stability ensures that, for all z ∈ Σ�, the states δ(p, z)
and δ(q, z) belong to the same block of the partition; hence, either both states
belong to F or neither does. In other words: If δ(q0, x) = p and δ(q0, y) = q, for
x, y ∈ Σ�, then for all z ∈ Σ�, either {p, q} ⊆ F , in which case {xz, yz} ⊆ L(M),
or {p, q} ⊆ Q − F , in which case {xz, yz} ⊆ Σ� − L(M). By definition, then,
x ≡M y.

Returning to the algorithm, we have ended up with the FA M̂ of Fig. 2 as
the minimum-state version of M .

M̂ q δ̂(q, 0) δ̂(q, 1) q ∈ F ?

(start state) → [ae] [bh] [df ] /∈ F

[bh] [g] [c] /∈ F

(final state) → [c] [ae] [c] ∈ F

[df ] [c] [g] /∈ F

[g] [g] [ae] /∈ F

Fig. 2. The FA M̂ that minimizes the FA M of Fig.1.

5 Applying Myhill-Nerode Concepts to Non-FA’s

We present three applications of the concepts underlying Theorem 3 to state-
transition systems other than FA’s. Although our primary motivation is to ex-
pose interesting applications of Myhill-Nerode-type characterizations of “state,”
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for the sake of completeness, we sketch out the derivations of the results that
the characterizations lead to. The first two applications involve OA’s that are
strictly more powerful than FA’s.

5.1 Memory Bounds for Online Automata

By Theorem 3, any OA M that accepts a nonregular language must have in-
finitely many states. We now present a result from [6] that sharpens this state-
ment via an “infinitely-often” lower bound on the number of states an FA M (n)

must have in order to correctly mimic M ’s (word-acceptance) behavior on all
words of length ≤ n (thereby providing an “order-n approximation” of M). This
bound assumes nothing about M other than its accepting a nonregular language.
(Indeed, M ’s state-transition function δ need not even be computable.) In the
context of this survey, this result removes Theorem 3 from the confines of the
theory of FA’s, by adapting it to a broader class of state-transition systems. This
adaptation is achieved by converting the word-relating equivalence relation ≡M

to an automaton-relating relation that asserts the equivalence of two OA’s on all
words that are no longer than a chosen parameter.

Let L be a nonregular language, and let M be an OA that accepts L: L =
L(M). For any n ∈ N, an FA M (n) is an order-n approximate acceptor of L or,
equivalently, an order-n approximation of M if

{x ∈ L(M (n)) | �(x) ≤ n} = {x ∈ L | �(x) ≤ n} = {x ∈ L(M) | �(x) ≤ n}.

We denote by AL(n) the (obviously monotonic nondecreasing) number of states
in the smallest order-n approximate acceptor of L, as a function of n. This
quantity can be viewed as a measure of L’s “space complexity,” in the sense that
one needs �log2 AL(n)� bi-stable devices (say, transistors) in order to implement
an order-n approximate acceptor of L in circuitry.

The conceptual framework of Theorem 3 affords one easy access to a nontriv-
ial lower bound on the “infinitely-often” behavior of AL(n), for any nonregular
language L.

Theorem 8 ([6]). If the language L is nonregular, then, for infinitely many n,

AL(n) >
1
2
n + 1. (4)

Proof. Let M1 and M2 be OA’s. For any n ∈ N, we say that M1 and M2 are
n-equivalent, denoted M1 ≡n M2, just when

{x ∈ L(M1) | �(x) ≤ n} = {x ∈ L(M2) | �(x) ≤ n}.

This relation is, thus, a parameterized extension of the relation ≡M that is
central to Theorem 3.

Our analysis of approximate acceptors of L builds on the following bound on
the “degree” of equivalence of pairs of FA’s.
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Lemma 9 ([10]) Let M1 and M2 be FA’s with s1 and s2 states, respectively,
such that L(M1) = L(M2). Then M1 ≡s1+s2−2 M2.

Proof (Proof of Lemma 9). We bound from above the number of partition-
refinements that suffice for the state-minimization algorithm of Section 4.2 to
distinguish the initial states of M1 and M2 (which, by hypothesis, are distin-
guishable).

Since the algorithm is actually a “state-equivalence tester,” we can apply it
to state-transition systems that are not legal FA’s, as long as we are careful to
keep final and nonfinal state segregated from one another. We therefore apply
the algorithm to the following “disconnected” FA M . Say that, for i = 1, 2,
Mi = (Qi, Σ, δi, qi,0, Fi), where Q1∩Q2 = ∅. Then M = (Q, Σ, δ, {q1,0, q2,0}, F ),
where

– Q = Q1 ∪ Q2

– for q ∈ Q and σ ∈ Σ: δ(q, σ) =
{

δ1(q, σ) if q ∈ Q1

δ2(q, σ) if q ∈ Q2

– F = F1 ∪ F2.

Now, the fact that L(M1) = L(M2) implies: (a) that q1,0 ≡M q2,0; (b) that
neither Q − F nor F is empty. How many stages of the algorithm would be
required, in the worst case, to distinguish states q1,0 and q2,0 within M , when
the algorithm starts with the initial partition {Q − F, F}? Well, each stage
of the algorithm, save the last, must “split” some block of the partition into
two nonempty subblocks. Since one “split,” namely, the separation of Q − F
from F , occurs before the algorithm starts applying input symbols, and since
|Q| = s1 + s2, the algorithm can proceed for no more than s1 + s2 − 2 stages;
after that many stages, all blocks would be singletons! In other words, if p ≡M q,
for states p, q ∈ Q, then there is a string of length ≤ s1 + s2 − 2 that witnesses
the nonequivalence. Since we know that q1,0 ≡M q2,0, this completes the proof.

Back to the theorem. For each k ∈ N, Theorem 3 guarantees that there is a
smallest integer n > k such that AL(k) = AL(n− 1) < AL(n). The preceding
inequality implies the existence of FA’s M1 and M2 such that:

1. M1 has AL(n − 1) states and is an (n − 1)-approximate acceptor of L;
2. M2 has AL(n) and is an n-approximate acceptor of L.

By statement 1, M1 ≡n−1 M2; by statements 1 and 2, M1 ≡n M2. By Lemma 9,
then, M1 ≡AL(n−1)+AL(n)−2 M2. Since M1 ≡n−1 M2, we therefore have AL(n−
1) + AL(n) > n + 1, which yields Ineq. 4, since AL(n − 1) ≤ AL(n) − 1.

It is shown in [6] that Theorem 8 is as strong as possible, in that: the constants
1
2 and 1 in Ineq. 4 cannot be improved; the phrase “infinitely many” cannot be
strengthened to “all but finitely many.”
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5.2 Online Automata with Structured States

The preceding section derives a lower bound on the size of any OA M that
accepts a nonregular language L, by bounding the number of classes of ≡L. In
this section, we present lower bounds from [2] on the time a specific genre of OA
requires to accept a language L, based on the “structure” of the OA’s infinitely
many states. Specifically, we analyze the behavior of “online” Turing Machines
(TM’s) whose infinitely many states arise from a collection of read-write “work
tapes” of unbounded capacities. As in Section 5.1, the desired bound is achieved
by adapting Theorem 3 to a broad class of infinite-state OA’s. This adaptation is
achieved here by parameterizing the word-relating equivalence relation ≡M ; for
each integer t > 0, the parameter-t relation ≡(t)

M behaves like ≡M , but exposes
only discriminations that M can make in t or fewer steps.

A word about TM’s is in order, to explain why the study in this section is
relevant to computer scientists. The TM model originated in the monumental
study [19] that planted the seeds of computability theory, hence, also, of com-
plexity theory. Lacking real digital computers as exemplars of the genre, Turing
devised a model that served his purposes but that would be hard to justify to-
day as a way for thinking about either computers or algorithms. Seen in this
light, one surmises that TM’s persists in today’s textbooks on computation the-
ory only because of their mathematical simplicity. However, I believe there is
an alternative role for the TM model, which justifies continued attention—in
certain contexts. Specifically, one can often devise varieties of TM that allow
one to expose the impact of data-structure topology on the efficiency of certain
computations. These TM’s abstract the control portion of an algorithm down
to a finite state-transition system and use the TM’s “tapes” to model access to
data structures. The study in [2] uses TM’s in this way, focusing on the impact
of tape topology on efficiency of retrieving sets of words. As such, the bounds
here can be viewed as an early contribution to the theory of data structures.
This perspective underlay both my “data graph” model [16] and Schönhage’s
“storage modification machine” model [17]. The interesting features here are the
formulation of an information-retrieval problem as a formal language, and the
use of the concepts underlying Theorem 3 to analyze the problem.

5.2.1. The Online TM Model. A d-dimensional tape is a linked data structure
with an array-like topology, termed an orthogonal list in [7]. A tape is accessed
via a read-write head—the TM-oriented name for a pointer. Each cell of a tape
holds one symbol from a finite set Γ that contains a designated “blank” symbol;
e.g., in a 32-bit computer, Γ could be the set of 32-bit binary words, and the
“blank” symbol could be the word of all 1’s. Access to cells within a tape is
sequential: one can move the head at most one cell in any of the 2d permissible
directions in a step.

An online TM M with t d-dimensional “work tapes” can be viewed as an FA
that has access to t d-dimensional tapes. As with any FA, M has an input port
via which it scans symbols from its input alphabet Σ; it also has a designated
initial state and a designated set of final states.
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Let me explain the role of the input port in M ’s “online” computing,
by analogy with FA’s. One can view an FA as a device that is passive
until a symbol σ ∈ Σ is “dropped into” its input port. If the FA is in a
stable configuration at that moment—meaning that all bi-stable devices
in its circuitry have stabilized—then the FA responds to input σ. The
most interesting aspect of this response is that the FA indicates whether
the entire sequence of input symbols that it has been presented up to
that point—i.e., up to and including the last instance of symbol σ—
is accepted. Note that the FA responds to input symbols in an online
manner, making acceptance/rejection decisions about each prefix of the
input string as that prefix has been read. Of course, once the FA has
“digested” the last instance of symbol σ, by again reaching a stable
configuration, then it is ready to “digest” another input symbol, when
and if one is “dropped into” its input port.

The TM M uses its input port in much the manner just described. There is,
however, a fundamental difference between an FA and an online TM. During
the “passive” periods in which an FA does not accept new input symbols at
its input port, the FA is typically waiting for its logic to stabilize, hence is
usually not considered to be doing valuable computation. In contrast, during
the “passive” periods in which an online TM does not accept new input symbols
at its input port, the TM may be doing quite valuable subcomputations using its
work tapes. Indeed, the study in [2] can be viewed as bounding (from below) the
cumulative time that must be devoted to these “introspective” subcomputations
when performing certain computations. With this intuitive background in place,
a computational step by M depends on:

– its current state,
– the current input symbol, if M ’s program reads the input at this step,
– the t symbols (elements of Γ ) currently scanned by the pointers on the t

tapes.

On the basis of these, M :

– enters a new state (which may be the same as the current one),
– independently rewrites the symbols currently scanned on the t tapes (possi-

bly with the same symbol as the current one),
– independently moves the read-write head on each tape at most10 one square

in one of the 2d allowable directions.

Notes. (a) When d = 1, we have a TM with t linear (i.e., one-dimensional)
tapes. (b) Our tapes have array-like topologies because of the focus in [2]. It
is easy to specify tapes with other regular topologies, such as trees of various
arities.

One extends M ’s one-step computation to a multistep computation (whose
goal is language recognition, as usual) as follows. To determine if a word w =

10 “At most” means that a read-write head is allowed to remain stationary.
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σ1σ2 · · ·σn ∈ Σ� is accepted by M—i.e., is in the language L(M)—one makes
w’s n symbols available, in sequence, at M ’s input port. If M starts in its initial
state with all cells of all tapes containing the “blank” symbol, and it proceeds
through a sequence of N steps that:

– includes n steps during which M “reads” an input symbol,
– ends with a step in which M is programmed to “read” an input symbol,

then M is said to decide w in N steps; if, moreover, M ’s state at step N is an
accepting state, then M is said to accept w in N steps.

The somewhat complicated double condition for acceptance (“includes . . . ”
and “ends with . . . ”) ensures that, if M accepts w, then it does so unambiguously.
Specifically, after reading the last symbol of w, M does not “give its answer”
until it prepares to read the next input symbol (if that ever happens). This
means that M cannot oscillate between accepting and nonaccepting states after
reading the last symbol of w.

5.2.2. The Impact of Tape Structure on Memory Locality. The con-
figuration of an online TM M having t d-dimensional tapes, at any step of a
computation, is the (t + 1)-tuple 〈q, τ1, τ2, . . . , τt〉 defined as follows.

– q is the state of M ’s finite-state control (its associated FA);
– each τi is the d-dimensional configuration of symbols from Γ that comprises

the non-“blank” portion of tape i, with one symbol highlighted (in some
way) to indicate the current position of M ’s read-write head on tape i.

(M ’s configuration is often called its “total state.”) The importance of this con-
cept resides in the following. Say that, for i = 1, 2, the database-string xi ∈ Σ�

leads M to configuration CM (xi) = 〈qi, τi1, τi2, . . . , τit〉. If:

– q1 = q2; i.e., the configurations share the same state;
– for some integer r ≥ 1, and all i ∈ {1, 2, . . . , t}, tape configurations τ1i

and τ2i are identical within r symbols of their highlighted symbols (which
indicate where M ’s read-write heads reside),

then we say that the databases specified by x1 and x2 are r-indistinguishable
by M , denoted x1 ≡(r)

M x2. This relation is an important parameterization of
the FA-oriented relation ≡M that is central to Theorem 3. Specifically, by an-
alyzing relation ≡(r)

M , one can sometimes bound the time-complexity of various
subcomputations by M , in the following sense.

Lemma 10 Say that x1 ≡(r)
M x2. If there exists a y ∈ Σ� such that one of

x1y, x2y belongs to L(M), while the other does not, then, having read either of
x1 or x2, M must compute for more than r steps while reading y.
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5.2.3. An Information-Retrieval Problem Formulated as a Language.
The following problem is used in [2] to expose the potential effect of tape struc-
ture on computational efficiency. We feed an online TM M a set of equal-length
binary words, which we term a database. We then feed M a sequence of bi-
nary words, each of which is termed a query. After reading each query, M must
respond “YES” if the query word occurs in the database, and “NO” if not.

The database language LDB ⊆ Σ�, where, Σ = {0, 1, :}, and “:” is a symbol
distinct from “0” and “1,” formalizes the preceding problem. Each word in LDB

has the form
ξ1 : ξ2 : · · · : ξm :: η1 : η2 : · · · : ηn

where, for some k ∈ N,

– each ξi (1 ≤ i ≤ m) and each ηj (1 ≤ j ≤ n) is a length-k binary string;
– m = 2k;
– ηn ∈ {ξ1, ξ2, . . . , ξm}.

Both the sequence of ξi’s and the sequence of ηj ’s can contain repetitions. In par-
ticular, we are interested only in the set of words {ξ1, ξ2, . . . , ξm} (the database).
The database string “ξ1 : ξ2 : · · · : ξm” is just the mechanism we use to present
the database to M . Each word ηj is a query. In each word x ∈ LDB, the double
colon “::” separates the database from the queries, while the single colon “:”
separates consecutive binary words.

The fact that we are interested only in whether or not the last query appears
in the database reflects the online nature of the computation: M must respond
to each query as it appears, with no knowledge of which is the last, hence, the
important one. (This is essentially the challenge faced by all online algorithms.)

5.2.4. Tape Dimensionality and the Time to Recognize LDB. For sim-
plicity, we focus henceforth on the sublanguages of LDB that are parameterized
by the common lengths of their binary words. For each k ∈ N, L

(k)
DB denotes

the sublanguage in which each ξi and each ηj has length k. Note that each
database-string in L

(k)
DB has length (k + 1)2k − 1.

Focus on any fixed L
(k)
DB. If the database-strings x1 and x2 specify distinct

databases, then there exists a query η that appears in the database specified by
one of the xi but not the other—so, precisely one of x1 :: η and x2 :: η belongs
to L

(k)
DB. Database-strings that specify distinct databases must, thus, lead M to

distinct configurations.
How “big” must these configurations be? On the one hand, there are 22k − 1

distinct databases (corresponding to each nonempty set of length-k ξi’s). On the
other hand, for any M with t d-dimensional tapes, there is an αM > 0 that
depends only on M ’s structure, such that M has ≤ αdtr

M distinct configurations
of “radius” r—meaning that all non-“blank” symbols on all tapes reside within
r cells of the read-write heads. Thus, in order for each database to get a distinct
configuration (so that ≡(r)

M has ≥ 22k − 1 equivalence classes), the “radius” r
must exceed βM · 2k/d, for some βM > 0 that depends only on M ’s structure.
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Combining this bound with Lemma 10, we arrive at the following time bound.

Lemma 11 If L(M) = L
(k)
DB, then, for some length-k query η, M must take11 >

βM · (21/d)k steps while reading η, for some βM > 0 that depends only on M ’s
structure.

The reasoning behind Lemma 11 is information theoretic, depending only
on the fact that the number of databases in L

(k)
DB is doubly exponential in k,

while the number of bounded-”radius” TM configurations is singly exponential.
Therefore, no matter how M reorganizes its tape contents while responding to
one bad query, there must be a query that is bad for the new configuration! By
focusing on strings with 2k bad queries, we thus obtain:

Theorem 12 ([2]). Any online TM M with d-dimensional tapes that recognizes
the language LDB must, for infinitely many N , take time > βM ·(N/ log N)1+1/d

to process inputs of length N , for some constant βM > 0 that depends only on
M ’s structure.

One finds in [2] a companion upper bound of O(N1+1/d) for the problem
of recognizing LDB. Hence, Theorem 12 does expose the potential of nontrivial
impact of data-structure topology on computational efficiency. In its time, the
theorem also exposed one of the earliest examples of the cost of the online
requirement. Specifically, LDB can clearly be accepted in linear time by a TM M
that has just a single, linear work tape, but that operates in an offline manner—
meaning that M gets to see the entire input string before it must give an answer
(so that it knows which query is important before it starts computing).

6 Finite Automata with Probabilistic Transitions

We now consider a rather different genre of OA’s, namely, FA’s whose state-
transitions are probabilistic, with acceptance decisions depending on the prob-
ability of ending up in an final state. This is a very timely model to consider
since probabilistic state-transition systems are currently quite in vogue in several
areas of artificial intelligence, notably the growing area of machine learning. The
main result that we present comes from [14]; it exhibits a nontrivial, somewhat
surprising situation in which probabilistic state-transitions add no power to the
model: The restricted automata accept only regular sets.

6.1 PFA’s and Their Languages

We start with an FA, M = (Q, Σ, δ, q0, F ), and make its state-transitions and
acceptance criterion probabilistic. We call the resulting model a Probabilistic
Finite Automaton (PFA, for short).

11 We write 2k/d in the unusual form (21/d)k to emphasize that the dimensionality of
M ’s tapes (which is a fixed constant) appears only in the base of the exponential.
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States. We simplify the formal development by positing that the state-set
of the PFA M is Q = {1, 2, . . . , n}, with q0 = 1, and F = {m, m + 1, . . . , n} for
some m ∈ Q.

State-transitions. We replace M ’s state-transition function δ with a set of
tables, one for each symbol of Σ. The table associated with σ ∈ Σ indicates, for
each pair of states q, q′ ∈ Q, the probability—call it ρq,q′—that M ends up in
state q′ when started in state q and “fed” input symbol σ. It is convenient to
present the state-transition tables as matrices. The table associated with σ ∈ Σ
is:

Δσ =

⎛⎜⎜⎜⎝
ρ1,1 ρ1,2 · · · ρ1,n

ρ2,1 ρ2,2 · · · ρ2,n

...
...

. . .
...

ρn,1 ρn,2 · · · ρn,n

⎞⎟⎟⎟⎠
where each12 ρi,j ∈ [0, 1], and, for each i,

∑
j ρi,j = 1.

States, revisited. The probabilistic nature of M ’s state-transitions forces
us to distinguish between M ’s set of states—the set Q—and the “state” that
reflects M situation at any point of a computation, which is a probability dis-
tribution over Q. We therefore define the state-distribution of M to be a vector
of probabilities q = 〈π1, π2, . . . , πn〉, where each πi is the probability that M is
in state i. The initial state-distribution is q0 = 〈1, 0, . . . , 0〉.

State-transitions, revisited. Under the preceding formalism, the PFA ana-
logue of the FA single-symbol state-transition δ(q, σ) is the vector-matrix prod-
uct: Δ̂(q, σ) = q × Δσ. By extension, the PFA analogue of the FA string
state-transition δ(q, σ1σ2 · · ·σk), where each σi ∈ Σ, is

Δ̂(q, σ1σ2 · · ·σk) def= q × Δσ1 × Δσ2 × · · · × Δσn . (5)

The language accepted by a PFA. The probabilistic analogue of accep-
tance by final state builds on the notion of an (acceptance) threshold θ ∈ [0, 1].
The string x ∈ Σ� is accepted by M iff

pM (x) def=
n∑

i=m

Δ̂(q0, x)i > θ,

where Δ̂(q, x)i denotes the ith coordinate of the tuple Δ̂(q, x). (Recall that M ’s
final states are those whose integer-names are ≥ m.) Thus, x is accepted iff
it leads M from its initial state to its set of final states with probability > θ.
As with all OA’s, the language accepted by M is the set of all strings that M
accepts. Acknowledging the crucial role of the acceptance threshold θ, we denote
this language by

L(M, θ) def= {x ∈ Σ� | pM (x) > θ}.

12 As usual, [0, 1] denotes the closed real interval {x | 0 ≤ x ≤ 1}.
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6.2 L(M, θ) Is Regular when θ Is “Isolated”

It is noted in [14] that even simple—e.g., two-state—PFA’s can accept nonregular
languages, when accompanied by an “unfavorable” acceptance threshold. When
thresholds are “favorable,” though, all PFA’s accept regular languages.

The threshold θ ∈ [0, 1] is isolated for the PFA M iff there exist a real constant
of isolation ε > 0 such that, for all x ∈ Σ�, |pM (x) − θ| ≥ ε.

Theorem 13 ([14]). For any PFA M and associated isolated acceptance thresh-
old θ, the language L(M, θ) is regular.

Proof. We sketch the proof from [14], which is a direct application of Theorem 3.
Say that M has n states, a of which are final, and let ε > 0 be the constant
of isolation. We claim that the relation ≡L(M,θ) cannot have more than κ

def=
[1 + (a/ε)]n−1 classes.

This bound is established by considering a set of k words that are mutually
inequivalent under ≡L(M,θ), with the aim of showing that k cannot exceed κ.
This is accomplished by converting M ’s language-related problem to a geometric
setting, by considering, for each x ∈ Σ�, the point in n-dimensional space given
by Δ̂(q0, w) (cf. Eq. 5).

In the language-related setting, we consider an arbitrary pair of inequivalent
words, xi, xj ∈ Σ�, and note that there must exist y ∈ Σ� such that (w.l.o.g.)
xiy ∈ L(M, θ) while xjy ∈ L(M, θ). In the geometric setting, this translates into
the existence of three points:

〈ξ(i)
1 , ξ

(i)
2 , . . . , ξ

(i)
n 〉 corresponding to xi

〈ξ(j)
1 , ξ

(j)
2 , . . . , ξ

(j)
n 〉 corresponding to xj

〈η1, η2, . . . , ηn〉 corresponding to y

such that (here are the acceptance conditions):

θ + ε < ξ
(i)
1 η1 + ξ

(i)
2 η2 + · · · + ξ(i)

n ηn;

θ − ε ≥ ξ
(j)
1 η1 + ξ

(j)
2 η2 + · · · + ξ(j)

n ηn.

Elementary reasoning then allows us to infer that

2(ε/a) ≤ |ξ(i)
1 − ξ

(j)
1 | + |ξ(i)

2 − ξ
(j)
2 | + · · · + |ξ(i)

n − ξ(j)
n |.

We next consider, for each i ∈ {1, 2, . . . , k}, the set Λi comprising all points
〈ξ1, ξ2, . . . ξn〉 such that

• ξl ≥ ξ
(i)
l for all l ∈ {1, 2, . . . , n} •

n∑
l=1

(ξl − ξ
(i)
l ) = (ε/a).

By bounding the volumes of the sets Λi, and arguing that no two share an
internal point, one arrives at the following bounds on the cumulative volumes of
the sets.

kc(ε/a)n−1 =
n∑

l=1

Vol(Λl) = c(1 + (ε/a))n−1.

We infer directly that k ≤ [1 + (a/ε)]n−1, as was claimed.
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7 Conclusions

It has been my goal to present a technical argument for the importance of the
Myhill-Nerode Theorem and the concepts it uses to characterize the notion of
“state.” I have attempted to do so by reviewing several applications of (the
concepts underlying) the Theorem, to areas as diverse as Finite Automata the-
ory (Section 4.1), logic design (Section 4.2), space complexity (Section 5.1), the
theory of data structures (Section 5.2), and artificial intelligence/machine learn-
ing (Section 6). To the extent that the role of theoretical computer science is
to provide nonobvious conceptual frameworks for thinking/reasoning about and
analyzing “real” computational settings and systems—and no one can dispute
that this is at least one of the roles of the theory—the Myhill-Nerode Theorem is
a success story for the field, one that should be in the toolbox of every theoretical
computer scientist.

In closing, I want to stress that the Myhill-Nerode Theorem and its asso-
ciated concepts is just one of the treasures from the 1960’s that have slipped
from front stage as automata-like models have slipped from favor. I would men-
tion the product-decomposition work in [1] as another topic in the study of
state-transition systems whose significance surely transcends the study of Finite
Automata in which the work originated.

Acknowledgment. It is a pleasure to acknowledge my debt to Oded Goldreich
for many perceptive comments, criticisms, and suggestions. I am grateful also to
several others, notably Micah Adler and Ami Litman, for sharing insights and
posing technical challenges.
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